作为医疗保健领域的一股新鲜力量,数字孪生有望成为逆转糖尿病等慢性疾病的关键。
位于加利福尼亚州山景城的初创公司Twin Health开发出一种技术,能够通过“数字孪生”来模拟患者个体的新陈代谢情况。以此为基础,该模型能够进一步预测营养摄入、睡眠与运动量等指标,预防或者减小糖尿病等慢性疾病引发的负面影响。
这种全身数字孪生技术已经在临床研究中带来乐观表现,出色的成果也让Twin Health从投资方手中拿到数额可观的研究资金。
该公司最近刚刚完成C轮融资,总额高这1.4亿美元。这笔融资来自ICONIQ Growth、红杉资本(印度)、Perceptive Advisors、Corner Ventures、LTS Investments、Helena 以及 Sofina。Twin Health将利用这笔巨款持续开发原研技术,并扩大业务在新兴疾病领域及患者群体中的覆盖范围。
该系统能够从健康追踪器与血糖监测仪等可穿戴设备、定期血液检查及自主上报症状等信息源处持续监控数千个数据点,借此建立并持续更新病患的数字孪生副本。
Twin Health会进一步利用预测性AI对数字孪生模型的各个版本开展分析,了解生活方式的变化如何左右患者健康,进而提出调整建议以引导健康改进、扭转不良习惯对长期代谢状况的负面影响。患者可以通过Twin Health应用随时查看结果,并将重要生物标志物上报给医疗保健服务商、确保患者能够随健康状况的改善而减少服药剂量。
目前Twin Health正在推进一项针对II型糖尿病患者血糖水平、肝功能及体重等指标的数字孪生监测研究。去年6月发表的随机对照试验已经给出早期结果,表明在采用数字孪生的病患群体中,九成以上患者的糖尿病出现了部分逆转,具体表现为血糖水平下降至糖化血红蛋白(HbA1c)6.5以下,明显好于8.7的基准平均值。
研究人员还发现数字孪生组病患的平均体重减轻了约20磅,肝功能得到显著改善,92%的患者甚至可以完全停用胰岛素或其他糖尿病治疗药品。同时,对照组所有患者都没有实现糖尿病逆转、用药量仍然保持不变、体重或肝功能也未出现任何显著改善。
目前,只有参与Twin Health同健康保险与员工福利合作计划的相关方才能接触这一全身数字孪生建模项目。
可以看到,数字孪生技术正在健康管理、手术计划与药物开发等领域中愈发重要的新兴工具。以药物开发为例,AI驱动药物设计企业XtalPi最近刚刚完成C轮融资,总额达3.188亿美元,同时计划开发一套新的数字孪生模拟系统。这套预测建模系统将帮助生物制药公司快速筛选新药化合物,确保仅将具备最佳潜在功效的分子推向临床试验。
去年春季,刚刚成立的初创企业Q Bio也推出了自己的数字孪生平台。该平台使用自动化无辐射扫描设备在15分钟内生成病患的全身成像数据,而后即可结合遗传信息、医疗记录及其他测试结果帮助患者构建起数字孪生副本。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。