作为医疗保健领域的一股新鲜力量,数字孪生有望成为逆转糖尿病等慢性疾病的关键。
位于加利福尼亚州山景城的初创公司Twin Health开发出一种技术,能够通过“数字孪生”来模拟患者个体的新陈代谢情况。以此为基础,该模型能够进一步预测营养摄入、睡眠与运动量等指标,预防或者减小糖尿病等慢性疾病引发的负面影响。
这种全身数字孪生技术已经在临床研究中带来乐观表现,出色的成果也让Twin Health从投资方手中拿到数额可观的研究资金。
该公司最近刚刚完成C轮融资,总额高这1.4亿美元。这笔融资来自ICONIQ Growth、红杉资本(印度)、Perceptive Advisors、Corner Ventures、LTS Investments、Helena 以及 Sofina。Twin Health将利用这笔巨款持续开发原研技术,并扩大业务在新兴疾病领域及患者群体中的覆盖范围。
该系统能够从健康追踪器与血糖监测仪等可穿戴设备、定期血液检查及自主上报症状等信息源处持续监控数千个数据点,借此建立并持续更新病患的数字孪生副本。
Twin Health会进一步利用预测性AI对数字孪生模型的各个版本开展分析,了解生活方式的变化如何左右患者健康,进而提出调整建议以引导健康改进、扭转不良习惯对长期代谢状况的负面影响。患者可以通过Twin Health应用随时查看结果,并将重要生物标志物上报给医疗保健服务商、确保患者能够随健康状况的改善而减少服药剂量。
目前Twin Health正在推进一项针对II型糖尿病患者血糖水平、肝功能及体重等指标的数字孪生监测研究。去年6月发表的随机对照试验已经给出早期结果,表明在采用数字孪生的病患群体中,九成以上患者的糖尿病出现了部分逆转,具体表现为血糖水平下降至糖化血红蛋白(HbA1c)6.5以下,明显好于8.7的基准平均值。
研究人员还发现数字孪生组病患的平均体重减轻了约20磅,肝功能得到显著改善,92%的患者甚至可以完全停用胰岛素或其他糖尿病治疗药品。同时,对照组所有患者都没有实现糖尿病逆转、用药量仍然保持不变、体重或肝功能也未出现任何显著改善。
目前,只有参与Twin Health同健康保险与员工福利合作计划的相关方才能接触这一全身数字孪生建模项目。
可以看到,数字孪生技术正在健康管理、手术计划与药物开发等领域中愈发重要的新兴工具。以药物开发为例,AI驱动药物设计企业XtalPi最近刚刚完成C轮融资,总额达3.188亿美元,同时计划开发一套新的数字孪生模拟系统。这套预测建模系统将帮助生物制药公司快速筛选新药化合物,确保仅将具备最佳潜在功效的分子推向临床试验。
去年春季,刚刚成立的初创企业Q Bio也推出了自己的数字孪生平台。该平台使用自动化无辐射扫描设备在15分钟内生成病患的全身成像数据,而后即可结合遗传信息、医疗记录及其他测试结果帮助患者构建起数字孪生副本。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。