近日,ARM发布 2023全面计算解决方案(TCS23),并于北京举行了技术分享日活动,来自快手的技术专家分享了在大型项目中通过使用MTE来提升内存安全的最新实践。
ARM在 2023全面计算解决方案中,重点强调了内存标签扩展 (Memory Tagging Extension, MTE) 特性。据了解,MTE可以帮助开发者在部署之前和之后检测到内存安全问题,保证App内存稳定性提升用户体验,并减少安全漏洞降低受到攻击的可能性。
作为领先的短视频和直播平台,2023年一季度,快手应用的DAU同比增长8.3%达 3.74亿,短视频及直播内容的总观看次数同比增长超10%,累计互关用户对数超过296亿对。为了给用户提供极致体验,快手非常重视App稳定性和保护用户的隐私安全。
来自快手的技术专家李锐介绍,通过与ARM、Google、VIVO、荣耀等公司合作,快手在大型Android工程项目中使用 Arm MTE 提高内存安全,90% 的内存安全问题可以在 App 正式发布之前就在线下被检测拦截,全面保障线上用户的基础体验。
在追求高性能和跨平台的基础软件领域,快手使用C/C++/Assembly作为主要编程语言,这些语言提供了对内存的直接灵活控制,程序员需要手动管理内存,包括分配、释放和直接使用地址读写内存,通常被称为内存不安全的语言。
在快手这样量级的App里,由于多线程并发和对象生命周期的管理复杂,外加海量用户、高使用时长、碎片化设备等因素,很容易出现内存破坏的问题,导致了大量偶发崩溃。并且根据Google Android的报道,75%的漏洞都和内存非法使用有关。
过去,快手主要基于LLVM ASan工具进行内存破坏检测,由于传统内存检测工具的性能开销较高,且需要重新编译所有源代码,所以几乎无法在快手这样量级的大型项目日常开发实践中使用这些工具。
而快手MTE 自定义方案解决了这些问题,打破了传统内存检测工具的不可能三角。基于用户真实场景,在高内存负载下开启MTE,依然可以十分流畅的运行快手app。包括视频观看、主页刷feed流、生产拍摄、直播推拉流、电商等高频使用内存的业务场景。累计检出内存破坏bug数十个,包括自研库、三方库和系统GPU驱动库等,在保证内存安全方面发挥了重要作用。
快手稳定性团队是国内率先在Android应用侧把MTE技术完整落地用于大型App内存安全检测的,也早于Facebook和Unity在大型工程中实践,取得了不错的收益。并且ARM也在2023MWC世界移动通信大会上,将快手的实践作为Case Study展示。
李锐表示,通过与ARM等合作伙伴的共同努力,快手技术团队将持续提升系统稳定性和隐私安全,为用户提供更好的体验。
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。