虽然大型语言模型(LLM)在文本生成方面展示了令人印象深刻的能力,但我们发现它们的能力尚未推广到音乐(人类的创造性语言)。
我们推出 ChatMusician,这是一个集成了内在音乐能力的开源LLM。它基于在文本兼容的音乐表示、ABC 表示法上对 LLaMA2 进行持续的预训练和微调,并且音乐被视为第二语言。ChatMusician 可以使用纯文本标记器理解和生成音乐,无需任何外部多模式神经结构或标记器。
有趣的是,赋予音乐能力并不会损害语言能力,甚至可以取得略高的 MMLU 分数。我们的模型能够根据文本、和弦、旋律、主题、音乐形式等创作结构良好的完整音乐,超越 GPT-4 基线。
在我们精心策划的大学级音乐理解基准测试 MusicTheoryBench 上,ChatMusician 在零样本设置上明显超越了 LLaMA2 和 GPT-3.5。我们的工作表明,LLM可以成为出色的音乐压缩器,但仍有大量领域有待征服。
我们在 GitHub 上发布了我们的 4B 代币音乐语言语料库 MusicPile、收集的 MusicTheoryBench、代码、模型和演示。
参考文献:
[1] ChatMusician: Understanding and Generating Music Intrinsically with LLM(通过LLM本质上理解和生成音乐)
[2] 论文:https://huggingface.co/papers/2402.16153
[3] 项目:https://shanghaicannon.github.io/ChatMusician/
[4] https://cdn-uploads.huggingface.co/production/uploads/60f1abe7544c2adfd699860c/WDMvwieajdGIJXfJ830Y0.mp4
好文章,需要你的鼓励
微软宣布为Word和Excel推出基于OpenAI的AI代理模式,通过简单提示即可自动生成文档和分析数据。Word用户可享受"氛围写作"功能,利用现有文档组装报告和提案。Excel代理能分析电子表格数据并生成可视化报告。尽管在SpreadsheetBench基准测试中准确率仅为57.2%,低于人类平均水平71.3%,但微软强调其针对实际工作场景优化。此外,微软还发布了基于Anthropic的Office代理,显示其正逐步减少对OpenAI的依赖。
苹果与清华合作提出EpiCache技术,解决AI长期对话中的记忆管理难题。该方法将对话自动分割成话题片段,为每个话题建立专门记忆库,实现智能匹配和高效检索。实验显示,EpiCache比传统方法准确率提高40%,内存使用减少4-6倍,响应速度提升2.4倍,为资源受限环境下的AI对话系统提供了实用解决方案。
OpenAI为美国ChatGPT用户推出"即时结账"功能,用户可在对话中直接购买Etsy和Shopify商品,无需跳转至外部网站。该功能支持Apple Pay、Google Pay等多种支付方式,并计划接入超过100万家Shopify商户。OpenAI还将开源其代理商务协议技术,与谷歌的代理支付协议形成竞争。这标志着电商购物模式的重大转变,AI聊天机器人可能重塑在线零售发现和支付生态系统。
清华大学与英伟达合作提出DiffusionNFT,一种革命性的AI图像生成训练方法。该方法通过对比正负样本进行学习,避免了复杂的概率计算,训练效率比传统方法提升25倍。研究团队在多项测试中验证了其优越性,不仅大幅提升了图像质量和文字渲染能力,还实现了无需分类器引导的高效训练,为AI图像生成技术的普及和应用奠定了重要基础。