目前,许多领导者对其组织的生成式人工智能专业知识充满信心。44%的受访者认为其组织目前在生成式人工智能方面拥有很高(35%)或非常高(9%)的专业知识水平。
相对于其他受访者,那些将其组织的整体生成式人工智能专业知识评为“非常高”的领导者往往对这项技术感到更加积极;他们也感受到更大的压力,并将其视为对其业务和运营模式的更大威胁。
当前的生成式人工智能努力仍然更多地关注效率、生产力和降低成本,而不是创新和增长。大多数接受调查的组织目前的目标是战术效益,如提高效率/生产力(56%)和/或降低成本(35%)。此外,91%的受访者表示,他们希望生成式人工智能能够提高组织的生产力,27%的人希望生产力能大幅提高。
大多数组织主要依赖现成的人工智能解决方案。与他们目前强调生成式人工智能的战术效益相一致,绝大多数受访者目前依赖于现成的解决方案。
人才、治理和风险是缺乏生产性人工智能准备的关键领域。在最初的季度调查中,41%的领导者表示,他们的组织只是稍微或根本没有准备好解决与生成式人工智能采用相关的人才问题;22%的人认为他们的组织准备得非常充分。
领导者正在寻求更多的全球监管和合作。在打破传统商业规范的情况下,与生成式人工智能相关的独特风险促使许多商业领袖呼吁加强政府监管,并加强围绕人工智能技术的全球合作。
以下是《2024年美国生成式人工智能报告》部分内容:
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。