目前,许多领导者对其组织的生成式人工智能专业知识充满信心。44%的受访者认为其组织目前在生成式人工智能方面拥有很高(35%)或非常高(9%)的专业知识水平。
相对于其他受访者,那些将其组织的整体生成式人工智能专业知识评为“非常高”的领导者往往对这项技术感到更加积极;他们也感受到更大的压力,并将其视为对其业务和运营模式的更大威胁。
当前的生成式人工智能努力仍然更多地关注效率、生产力和降低成本,而不是创新和增长。大多数接受调查的组织目前的目标是战术效益,如提高效率/生产力(56%)和/或降低成本(35%)。此外,91%的受访者表示,他们希望生成式人工智能能够提高组织的生产力,27%的人希望生产力能大幅提高。
大多数组织主要依赖现成的人工智能解决方案。与他们目前强调生成式人工智能的战术效益相一致,绝大多数受访者目前依赖于现成的解决方案。
人才、治理和风险是缺乏生产性人工智能准备的关键领域。在最初的季度调查中,41%的领导者表示,他们的组织只是稍微或根本没有准备好解决与生成式人工智能采用相关的人才问题;22%的人认为他们的组织准备得非常充分。
领导者正在寻求更多的全球监管和合作。在打破传统商业规范的情况下,与生成式人工智能相关的独特风险促使许多商业领袖呼吁加强政府监管,并加强围绕人工智能技术的全球合作。
以下是《2024年美国生成式人工智能报告》部分内容:
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。