01
在AI界,对于如何进一步推动AI的发展,存在两种主要观点。第一种观点认为,计算能力是AI进步的唯一瓶颈。这群人相信,只要我们不断增加计算资源的投入,就能不断提升AI的性能,甚至最终实现AGI(通用人工智能)。简单来说,就是有钱能使AI推磨。就像建造一座高楼大厦,只要有足够的钢筋水泥(计算能力),楼一定可以盖得越来越高。
然而,另一种观点却认为,数据才是关键。他们认为我们正面临一个“数据墙”的瓶颈,无论我们拥有多少计算能力,如果没有足够的数据,AI的进展都会放缓。数据墙的存在让人们意识到,仅靠增加计算能力,已经不能带来显著的性能提升。我们必须同时扩展数据量,才能看到更好的结果。
那么,数据墙到底是什么呢?其实,数据墙就像是我们在玩一个游戏,不管你多厉害,如果没有新的关卡和资源,你就会停滞不前。AI也是一样,再多的计算能力,如果没有足够的新数据来训练,效果也会大打折扣。
02
突破数据墙的可能方法
面对数据墙,业界提出了几种潜在的解决方案,希望能够突破这个瓶颈:
首先是高端专家数据。这些数据比普通互联网数据更有价值,就像有经验的老师给你指点迷津,效率自然高很多。高端专家数据通常来自于专业领域的权威和前沿研究,能提供深度和广度兼备的信息。
其次是强化学习(RL)环境。在这种环境下,AI可以通过模拟和自我学习,不断生成新的数据。这类似于AI在一个虚拟世界中自我修炼,积累经验。例如,在一个虚拟驾驶环境中,AI可以无限次地模拟驾驶场景,从而不断优化自己的驾驶技能。
最后是合成数据。这是一种通过算法生成的数据,能够弥补实际数据的不足。就像电影中的特效,虽然是虚拟的,但看起来同样真实。合成数据可以模拟各种复杂场景和条件,帮助AI模型进行全面训练。
这些方法看起来很有前途,但能否真正突破数据墙仍是未知数。有些专家认为,数据墙只是暂时的技术障碍,可以通过工程设计来解决;另一些人则担心这会导致AI发展的长期停滞。我们可以把数据墙看作是马拉松比赛中的“极点”,有人认为熬过去就行,有人则认为可能跑不完。
分散的资源与未来的不确定性
除了数据和计算能力的挑战,还有一个实际问题是:资源的分配。1000亿美元的GPU投入其实是分散在多个实验室中。像谷歌、OpenAI、Meta、Anthropic等大型实验室,各自占有的资源都不超过总供应量的10-20%。
这意味着,即使某个实验室投入巨资,也很难在短时间内看到单个模型上的巨大突破。这就像是几支足球队分散训练,每支队伍的资源有限,难以形成绝对的优势。
未来的进展或许还依赖于新的算法突破,能够超越当前的缩放定律范式。这也意味着,我们可能需要更大规模的投资,比如5000亿美元,才能真正看到AI的显著进步。
写在最后的话
AI的未来充满了不确定性,计算和数据的挑战依然存在。尽管如此,人工智能毫无疑问将继续改变我们的生活,成为人类历史上最伟大的项目之一。
你怎么看待这些挑战和未来的AI发展?欢迎在评论区分享你的观点,并转发这篇文章,让更多人一起探讨AI的未来吧!
好文章,需要你的鼓励
戴尔在约一年之前推出了其Apex Red Hat OpenShift服务,支持在戴尔PowerEdge服务器上运行Red Hat OpenShift容器编排服务及带有SSD的PowerFlwx块存储。APEX是戴尔提供的一组服务,通过类似公有云的订阅模式提供计算、存储和网络设备。
第四次农业革命即将到来。包括物联网(IoT)部署(即用于收集和传输数据的数字化设备)以及AI在内的技术进步,正将效率推向新的顶点,并有望再次从根本上改变人类宰治整个地球的具体方式。
通过收购 Cradlepoint 和 Ericom 时所继承的知识产权、人力资本、渠道合作伙伴关系和客户关系(爱立信称全球有 36,000 多家企业)仍然是其发展主张的核心,并且基本上保持不变——尽管要将三家公司一个整体运作需要大量的后勤工作,但三家公司的合并同样是为了将爱立信的技术和专业知识转化为其服务属性。
沃达丰发布的《2024年顺应未来报告》(以下简称“顺应未来”报告)中揭示了一个激动人心的趋势:中国企业在拥抱数字化转型方面表现积极,在亚太地区排名第二,仅次于新加坡。然而,报告也引发了人们的疑问:人工智能的迅速发展究竟是信任的催化剂,还是担忧的制造者?中国企业如何在科技创新与社会责任之间取得平衡,并利用技术赢得消费者信任,实现长期增长?