GPT-4o mini模型自己承认是基于GPT-3.5架构的模型,有图有真相:
GPT-4o mini("o"代表"omni")是小型型号类别中最先进的型号,也是OpenAI迄今为止最便宜的型号。它是多模态的(接受文本或图像输入并输出文本),具有比 gpt-3.5-turbo
更高的智能,但速度同样快。它旨在用于较小的任务,包括视觉任务。建议在之前使用 gpt-3.5-turbo
的地方选择 gpt-4o-mini
,因为此模型功能更强大且更便宜。
模型 | 描述 | 上下文窗口 | 训练数据 |
---|---|---|---|
gpt-4o-mini | 新款 GPT-4o-mini经济实惠且智能的小型型号,适用于快速、轻量级的任务。 GPT-4o mini 比 GPT-3.5 Turbo 更便宜、功能更强大。当前指向 gpt-4o-mini-2024-07-18 。 | 128,000 tokens | Up to Oct 2023 |
gpt-4o-mini-2024-07-18 | gpt-4o-mini 当前指向此版本。 | 128,000 tokens | Up to Oct 2023 |
在Dify 0.6.14版本中没有包含gpt-4o-mini,因为当时还没发布。
在Dify官方仓库发现已经有人提交了,不过看清楚是提交给openrouter
供应商的。
(1)_position.yaml
文件
接下来修改下提交给openai
供应商。主要是修改dify\api\core\model_runtime\model_providers\openai\llm\_position.yaml
文件增加gpt-4o-mini
如下:
(2)gpt-4o-mini.yaml
文件
然后在dify\api\core\model_runtime\model_providers\openai\llm
目录增加gpt-4o-mini.yaml
文件即可:
具体就不详细解释了,仿照gpt-4o.yaml
写一个,主要是修改模型的名字,以及价格。
model: gpt-4o-mini
label:
zh_Hans: gpt-4o-mini
en_US: gpt-4o-mini
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
- vision
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 4096
- name: response_format
label:
zh_Hans: 回复格式
en_US: response_format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: "0.15"
output: "0.60"
unit: "0.000001"
currency: USD
[1] gpt-4o-mini.yaml:https://github.com/sinomoe/dify/commit/9ba76915187cef8914c0bd5f6d920c82456ffcce
[2] https://platform.openai.com/docs/models/gpt-4o-mini
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。