搭建一个企业内部AI 问答机器人、知识库的场景,我们可以选择大厂的云服务,这相对于大多数用户来说,是最省事的方案。但很多企业可能会有一些私有化的数据,或者受限于企业内部的安全性要求,只能走模型私有化部署的方式。
很多人想到模型私有化部署,会以为要数据中心的多台服务器来做,其实不然。
赞奇科技基于 NVIDIA ChatRTX 搭建的企业问答机器人
但搭建一个AI 问答机器人又是一个涉及硬件选择、安装、开发环境部署的综合过程。
最近赞奇的工程师团队测试了几款主流大模型,就采用 AI 工作站搭建一个本地问答机器人提供了一些建议参考,这里抓一些重点给大家:
第一步
确定需求与目标
这一步至关重要,需要确定以下关键点:
第二步
选择合适的硬件
根据需求我们来制定硬件配置,AI 工作站比较关键的配置有 GPU、CPU、内存、机箱等。
GPU
GPU 是 AI 工作站中非常核心的算力,也是 AI 工作站中需要首先考虑的配件。目前适用于专业 AI 工作站的显卡主要有 NVIDIA RTX(TM) 5880 Ada (48GB) 及 NVIDIA RTX(TM) 5000 Ada (32GB) 等,这两款显卡属于 NVIDIA 专业级显卡,主动散热、功耗很低而且非常稳定,静音也适合办公室使用。
我们可以看看两款显卡的参数:
我们需要根据算力需求来配置工作站中的显卡,包括显卡型号和数量。AI 工作站可至多支持 4 张高性能专业显卡,同时一个工作站中需要配置同一型号的显卡,并且一般采用单卡、双卡和四卡的配置。
这就需要我们同时要了解不同型号显卡的性能,才能来匹配任务需求。这是个极大的挑战。很多人对显卡性能并不熟悉,而且在不同的任务情况下,显卡的表现也会有所不同。我们可以参考与我们类似的任务在显卡上的测评数据来评估。有条件的话,在购买时建议最好提前测试下。
显卡实测数据
很多企业采用 AI 工作站来做知识库、智能问答等应用,主要任务是本地的模型微调和推理,模型大小普遍选择在 7B/8B,13B,32B 和 70B。
NVIDIA 解决方案合作伙伴赞奇科技,分别对 AI 工作站中搭载 NVIDIA RTX 5880 Ada、NVIDIA RTX 5000 Ada 的单卡、双卡、四卡配置进行了模型训练和推理的测试,测试数据供大家在选型时参考。
AI 工作站搭载 NVIDIA RTX 5000 Ada 的实测
NVIDIA RTX 5000 Ada
(图片源于 NVIDIA)
测试环境:
CPU: Intel(R) Xeon(R) w5-3433
内存:64G DDR5 * 8
GPU: NVIDIA RTX 5000 Ada * 4
操作系统:ubuntu22.04
Driver Version: 550.107.02
CUDA: 12.1
推理框架:vllm
测试数据(以下数据均为多次测试数据的平均值):
左右滑动查看更多测试数据
AI 工作站搭载 NVIDIA RTX 5880 Ada 的实测
NVIDIA RTX 5880 Ada
(图片源于 NVIDIA)
测试环境:
测试数据(以下数据均为多次测试数据的平均值):
左右滑动查看更多测试数据
噪音测试
无论是搭载 4 张 NVIDIA RTX 5880 Ada, 还是 4 张 NVIDIA RTX 5000 Ada 的品牌 AI 工作站,在压测情况下机器出风口测得的噪音水平控制在 50-60 分贝,基本上接近环境音的水平,办公室噪音?那是没有的!
好文章,需要你的鼓励
这项研究由新加坡国立大学团队开发的DualParal技术,通过创新的双重并行架构解决了AI视频生成的长度限制问题。该方法同时在时间帧和模型层两个维度实现并行处理,配合分块降噪机制、特征缓存和协调噪声初始化策略,使生成分钟级长视频成为可能。实验表明,在生成1,025帧视频时,DualParal比现有技术减少了高达6.54倍的延迟和1.48倍的内存成本,同时保持了高质量的视频输出,为内容创作者提供了生成更长、更复杂视频叙事的新工具。
SoloSpeech是约翰霍普金斯大学研究团队开发的创新语音处理技术,针对"鸡尾酒会效应"问题提出了全新解决方案。该系统通过级联生成式管道整合压缩、提取、重建和校正过程,实现了高质量目标语音提取。与传统判别式模型相比,SoloSpeech采用无需说话者嵌入的设计,直接利用提示音频的潜在空间信息与混合音频对齐,有效避免特征不匹配问题。在Libri2Mix及多个真实世界数据集上的评测显示,SoloSpeech在清晰度、质量和泛化能力上均达到了领先水平,为语音分离技术开辟了新方向。
这项由北京大学深圳研究生院、伟湾大学、腾讯ARC实验室和兔小贝智能联合研究的Sci-Fi框架,通过创新的对称约束机制,解决了视频帧间插值中的关键问题。研究团队设计了轻量级EF-Net模块,增强结束帧约束力,使其与起始帧形成平衡影响,从而生成更自然流畅的中间过渡帧。实验证明,该方法在各种场景下都优于现有技术,特别适用于电影制作、动画创作和视频编辑领域,显著降低了人力成本。
这项来自西北大学和谷歌的研究突破了传统马尔可夫强化学习的局限,通过贝叶斯自适应RL框架解释了大语言模型中涌现的反思性推理行为。研究团队提出的BARL算法通过维护多个解题策略的后验分布,指导模型何时何地进行反思性探索,在数学推理任务上展现出显著优势,比基线方法减少高达50%的标记使用量,同时提高了准确率。这一研究不仅解释了"为什么反思有用",还提供了实用的指导原则,为AI系统的自适应推理能力开辟了新方向。