搭建一个企业内部AI 问答机器人、知识库的场景,我们可以选择大厂的云服务,这相对于大多数用户来说,是最省事的方案。但很多企业可能会有一些私有化的数据,或者受限于企业内部的安全性要求,只能走模型私有化部署的方式。
很多人想到模型私有化部署,会以为要数据中心的多台服务器来做,其实不然。

赞奇科技基于 NVIDIA ChatRTX 搭建的企业问答机器人
但搭建一个AI 问答机器人又是一个涉及硬件选择、安装、开发环境部署的综合过程。
最近赞奇的工程师团队测试了几款主流大模型,就采用 AI 工作站搭建一个本地问答机器人提供了一些建议参考,这里抓一些重点给大家:
第一步
确定需求与目标
这一步至关重要,需要确定以下关键点:
第二步
选择合适的硬件
根据需求我们来制定硬件配置,AI 工作站比较关键的配置有 GPU、CPU、内存、机箱等。
GPU
GPU 是 AI 工作站中非常核心的算力,也是 AI 工作站中需要首先考虑的配件。目前适用于专业 AI 工作站的显卡主要有 NVIDIA RTX(TM) 5880 Ada (48GB) 及 NVIDIA RTX(TM) 5000 Ada (32GB) 等,这两款显卡属于 NVIDIA 专业级显卡,主动散热、功耗很低而且非常稳定,静音也适合办公室使用。
我们可以看看两款显卡的参数:

我们需要根据算力需求来配置工作站中的显卡,包括显卡型号和数量。AI 工作站可至多支持 4 张高性能专业显卡,同时一个工作站中需要配置同一型号的显卡,并且一般采用单卡、双卡和四卡的配置。
这就需要我们同时要了解不同型号显卡的性能,才能来匹配任务需求。这是个极大的挑战。很多人对显卡性能并不熟悉,而且在不同的任务情况下,显卡的表现也会有所不同。我们可以参考与我们类似的任务在显卡上的测评数据来评估。有条件的话,在购买时建议最好提前测试下。
显卡实测数据
很多企业采用 AI 工作站来做知识库、智能问答等应用,主要任务是本地的模型微调和推理,模型大小普遍选择在 7B/8B,13B,32B 和 70B。
NVIDIA 解决方案合作伙伴赞奇科技,分别对 AI 工作站中搭载 NVIDIA RTX 5880 Ada、NVIDIA RTX 5000 Ada 的单卡、双卡、四卡配置进行了模型训练和推理的测试,测试数据供大家在选型时参考。
AI 工作站搭载 NVIDIA RTX 5000 Ada 的实测

NVIDIA RTX 5000 Ada
(图片源于 NVIDIA)
测试环境:
CPU: Intel(R) Xeon(R) w5-3433
内存:64G DDR5 * 8
GPU: NVIDIA RTX 5000 Ada * 4
操作系统:ubuntu22.04
Driver Version: 550.107.02
CUDA: 12.1
推理框架:vllm
测试数据(以下数据均为多次测试数据的平均值):
左右滑动查看更多测试数据
AI 工作站搭载 NVIDIA RTX 5880 Ada 的实测

NVIDIA RTX 5880 Ada
(图片源于 NVIDIA)
测试环境:
测试数据(以下数据均为多次测试数据的平均值):
左右滑动查看更多测试数据
噪音测试
无论是搭载 4 张 NVIDIA RTX 5880 Ada, 还是 4 张 NVIDIA RTX 5000 Ada 的品牌 AI 工作站,在压测情况下机器出风口测得的噪音水平控制在 50-60 分贝,基本上接近环境音的水平,办公室噪音?那是没有的!
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。