搭建一个企业内部AI 问答机器人、知识库的场景,我们可以选择大厂的云服务,这相对于大多数用户来说,是最省事的方案。但很多企业可能会有一些私有化的数据,或者受限于企业内部的安全性要求,只能走模型私有化部署的方式。
很多人想到模型私有化部署,会以为要数据中心的多台服务器来做,其实不然。

赞奇科技基于 NVIDIA ChatRTX 搭建的企业问答机器人
但搭建一个AI 问答机器人又是一个涉及硬件选择、安装、开发环境部署的综合过程。
最近赞奇的工程师团队测试了几款主流大模型,就采用 AI 工作站搭建一个本地问答机器人提供了一些建议参考,这里抓一些重点给大家:
第一步
确定需求与目标
这一步至关重要,需要确定以下关键点:
第二步
选择合适的硬件
根据需求我们来制定硬件配置,AI 工作站比较关键的配置有 GPU、CPU、内存、机箱等。
GPU
GPU 是 AI 工作站中非常核心的算力,也是 AI 工作站中需要首先考虑的配件。目前适用于专业 AI 工作站的显卡主要有 NVIDIA RTX(TM) 5880 Ada (48GB) 及 NVIDIA RTX(TM) 5000 Ada (32GB) 等,这两款显卡属于 NVIDIA 专业级显卡,主动散热、功耗很低而且非常稳定,静音也适合办公室使用。
我们可以看看两款显卡的参数:

我们需要根据算力需求来配置工作站中的显卡,包括显卡型号和数量。AI 工作站可至多支持 4 张高性能专业显卡,同时一个工作站中需要配置同一型号的显卡,并且一般采用单卡、双卡和四卡的配置。
这就需要我们同时要了解不同型号显卡的性能,才能来匹配任务需求。这是个极大的挑战。很多人对显卡性能并不熟悉,而且在不同的任务情况下,显卡的表现也会有所不同。我们可以参考与我们类似的任务在显卡上的测评数据来评估。有条件的话,在购买时建议最好提前测试下。
显卡实测数据
很多企业采用 AI 工作站来做知识库、智能问答等应用,主要任务是本地的模型微调和推理,模型大小普遍选择在 7B/8B,13B,32B 和 70B。
NVIDIA 解决方案合作伙伴赞奇科技,分别对 AI 工作站中搭载 NVIDIA RTX 5880 Ada、NVIDIA RTX 5000 Ada 的单卡、双卡、四卡配置进行了模型训练和推理的测试,测试数据供大家在选型时参考。
AI 工作站搭载 NVIDIA RTX 5000 Ada 的实测

NVIDIA RTX 5000 Ada
(图片源于 NVIDIA)
测试环境:
CPU: Intel(R) Xeon(R) w5-3433
内存:64G DDR5 * 8
GPU: NVIDIA RTX 5000 Ada * 4
操作系统:ubuntu22.04
Driver Version: 550.107.02
CUDA: 12.1
推理框架:vllm
测试数据(以下数据均为多次测试数据的平均值):
左右滑动查看更多测试数据
AI 工作站搭载 NVIDIA RTX 5880 Ada 的实测

NVIDIA RTX 5880 Ada
(图片源于 NVIDIA)
测试环境:
测试数据(以下数据均为多次测试数据的平均值):
左右滑动查看更多测试数据
噪音测试
无论是搭载 4 张 NVIDIA RTX 5880 Ada, 还是 4 张 NVIDIA RTX 5000 Ada 的品牌 AI 工作站,在压测情况下机器出风口测得的噪音水平控制在 50-60 分贝,基本上接近环境音的水平,办公室噪音?那是没有的!
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。