当前,各行各业正处于双轨转型过程(数字化转型和绿色转型)中,产品和流程的碳足迹已成为一种新货币。由于可以访问数据,AI会成为将经验流程知识转化为预测性解决方案的关键使能器。这些解决方案将为客户和相关价值链节省成本。
在钢铁和橡胶等较为传统的行业,为预测性和规范性AI创建模型仍旧任重而道远。随着时间的推移,经验会不断积累。这是因为前端流程中的过程数据仍然缺失,需要传感器集成来生成这些数据,这也是棕地更新的目标。
传统制造业的用例面临更多的挑战和瓶颈,因为它们:
与用于大规模AI解决方案训练的数据集相比,有关工业流程的数据和信息更为稀缺。此外,数据集属于工业企业财产,往往不易获得。
欧洲目前的研发计划(GAIA-X、Catena-X、Manufacturing-X)正致力于通过资助制造业的数字化转型来解决其中的一些问题。欧洲议会于2022年4月6日通过的《数据治理法》旨在促进欧盟境内的数据共享,从而使公司和初创企业能够获得更多数据,用于开发新产品和服务。只有当利益相关方和用户能够访问大数据时,人工智能的潜力才能得到充分发挥。
以下是《GIO白皮书》部分内容:








好文章,需要你的鼓励
据报道,ServiceNow正与身份管理平台初创公司Veza进行深度收购谈判,交易金额可能超过10亿美元。Veza的平台帮助企业保护员工工作账户安全,识别未使用账户和权限过度的账户,还能检测违反职责分离政策的账户。该平台还可管理机器身份和应用程序集成。此次收购将补强ServiceNow在用户账户和机器身份管理方面的功能短板。
罗切斯特理工学院团队开发SPHINX系统,专门测试AI视觉推理能力。该系统可无限生成25类视觉推理题目,测试发现最强的GPT-5准确率仅51.1%,远低于人类75.4%。研究显示AI主要困难在视觉信息提取而非逻辑推理,通过强化学习训练可显著改善表现并迁移到其他任务。
谷歌云发布PanyaThAI数字化转型计划,旨在帮助泰国企业部署企业级AI智能体应用。该计划首批支持15家机构,包括朱拉隆功大学、泰国证券交易所等。研究显示AI到2030年可为泰国经济贡献7300亿泰铢。计划提供全栈AI基础设施、咨询服务和员工培训,合作伙伴将培训300名本地专家。已有企业展示成果,如SE-Education通过AI语义搜索将转化率从12%提升至27%。
法国理工学院研究团队开发的I-GLIDE系统,通过将复杂设备拆解为多个子系统分别诊断,结合不确定性量化技术,实现了设备剩余寿命预测的重大突破。该系统在NASA飞机引擎数据集上的预测误差比传统方法降低23-39%,同时提供了前所未有的可解释性,能够精确指出具体组件的健康状况,为工业智能维护提供了新的解决方案。