谷歌云在人工智能领域再次发力,今天宣布了两项面向数据科学家和医疗专业人士的重要新功能。
对于数据科学家,谷歌推出了一个新的 AI 代理,承诺将为数据科学和机器学习项目的数据分析提供强大支持。而医疗专业人士则将获得扩展的多模态搜索功能,以协助患者诊断和治疗规划。
首先,谷歌实验性项目孵化器 Google Labs 宣布在 Google Colab 中推出新的数据科学代理,以帮助软件开发者分析数据。
Google Colab 是一个免费的基于云的 Jupyter Notebook,开发者可以用它来编写和执行基于 Python 的代码,用于数据科学和机器学习任务。公司表示,通过在 Colab 中集成的数据科学代理,开发者可以将原本需要数周的数据研究和分析时间缩短至数分钟,从而大大加快应用程序的开发速度。
该功能由谷歌最先进的大语言模型 Gemini 2.0 驱动,旨在消除数据分析中繁琐的设置任务,如导入库、加载数据和编写样板代码。用户只需用自然语言描述想要进行的分析,然后静待 AI 驱动的数据科学代理呈现所需的洞察。
"今天,我们很高兴向所有 Colab 用户推出数据科学代理," Google Labs 在博客文章中写道。"这项功能允许用户通过简单的自然语言描述生成完整的、可运行的 Colab notebook。"
Google Labs 解释了使用方法的简便性。用户只需打开一个空白的 Colab notebook,上传数据,然后在 Gemini 侧边栏中描述他们想要进行的分析或想要构建的原型。比如简单地说"可视化趋势"或"构建并优化预测模型"即可。
完成后,数据科学代理将生成一个功能完整、可执行的 Colab notebook,其中的代码可以轻松定制以满足特定需求。
根据 Google Labs 的说法,数据科学代理已从早期测试者那里获得了很好的反馈。其中包括劳伦斯伯克利国家实验室的一位数据科学家,在研究全球热带湿地甲烷排放的项目中,他估计这个工具帮助将近一周的数据分析工作压缩到仅仅 5 分钟。
面向医疗专业人士的多模态搜索
在其他 AI 新闻方面,谷歌云宣布为其医疗平台的 Vertex AI Search 工具更新了一项名为视觉问答 (Visual Q&A) 的新功能,使用户能够更轻松地搜索表格、图表和图示,并询问其中的数据。
该公司解释说,Vertex AI Search 医疗版本中的新多模态搜索功能将通过提供更全面的患者健康视图来帮助医生、护士和其他医疗专业人士。
Vertex AI Search 医疗版是为医疗行业量身定制的 AI 搜索工具,旨在帮助临床医生从复杂的健康记录中检索信息。多模态 AI 指的是能够处理和整合来自不同来源的信息的技术,包括图像、视频和文本。
谷歌指出,这在医疗领域尤为重要,因为近 90% 的医疗数据都以图像形式存在,如 X 光片、扫描和照片。通过将图像数据与传统医疗文件中的书面记录和文本相结合,Vertex AI Search 医疗版可以帮助做出更准确的诊断,并帮助提出更个性化的治疗计划,改善患者预后。
谷歌云全球医疗战略与解决方案总监 Aashima Gupta 表示,新的多模态功能旨在帮助临床医生更高效地工作。"多模态分析处理多样化的患者数据来源,如医学图像和基因信息,以实现更全面的理解和改进决策制定,"她说。
好文章,需要你的鼓励
北京大学研究团队开发出基于RRAM芯片的高精度模拟矩阵计算系统,通过将低精度模拟运算与迭代优化结合,突破了模拟计算的精度瓶颈。该系统在大规模MIMO通信测试中仅需2-3次迭代就达到数字处理器性能,吞吐量和能效分别提升10倍和3-5倍,为后摩尔时代计算架构提供了新方向。
普拉大学研究团队开发的BPMN助手系统利用大语言模型技术,通过创新的JSON中间表示方法,实现了自然语言到标准BPMN流程图的自动转换。该系统不仅在生成速度上比传统XML方法快一倍,在流程编辑成功率上也有显著提升,为降低业务流程建模的技术门槛提供了有效解决方案。
谷歌宣布已将约3万个生产软件包移植到Arm架构,计划全面转换以便在自研Axion芯片和x86处理器上运行工作负载。YouTube、Gmail和BigQuery等服务已在x86和Axion Arm CPU上运行。谷歌开发了名为CogniPort的AI工具协助迁移,成功率约30%。公司声称Axion服务器相比x86实例具有65%的性价比优势和60%的能效提升。
北京大学联合团队发布开源统一视频模型UniVid,首次实现AI同时理解和生成视频。该模型采用创新的温度模态对齐技术和金字塔反思机制,在权威测试中超越现有最佳系统,视频生成质量提升2.2%,问答准确率分别提升1.0%和3.3%。这项突破为视频AI应用开辟新前景。