周四,法国大语言模型 (LLM) 开发商 Mistral 推出了一款面向处理复杂 PDF 文档的新 API。Mistral OCR 是一款光学字符识别 (OCR) API,可以将任何 PDF 转换为文本文件,使 AI 模型更容易处理。
作为 OpenAI ChatGPT 等流行生成式 AI 工具的基础,大语言模型对原始文本的处理效果特别好。因此,希望创建自己 AI 工作流的企业都意识到,以清晰格式存储和索引数据变得极其重要,这样才能在 AI 处理中重复使用这些数据。
与大多数 OCR API 不同,Mistral OCR 是一个多模态 API,能够检测文本块中交织的插图和照片。该 OCR API 会在这些图形元素周围创建边界框,并将其包含在输出中。
Mistral OCR 不会简单输出大段文本,而是以 Markdown 格式输出,这是开发人员用来在纯文本文件中添加链接、标题和其他格式元素的语法。
大语言模型在训练数据集中大量依赖 Markdown。同样,当使用 Mistral 的 Le Chat 或 OpenAI 的 ChatGPT 等 AI 助手时,它们经常使用 Markdown 来创建项目符号列表、添加链接或将某些元素加粗。助手应用程序会将 Markdown 输出无缝转换为富文本输出。这就是为什么随着生成式 AI 的蓬勃发展,原始文本和 Markdown 在近年来变得更加重要。
Mistral 联合创始人兼首席科学官 Guillaume Lample 表示:"多年来,组织积累了大量 PDF 或幻灯片格式的文档,这些文档对大语言模型 (特别是 RAG 系统) 来说是无法访问的。借助 Mistral OCR,我们的客户现在可以将丰富复杂的文档转换为所有语言的可读内容。"
他补充说:"对于需要简化访问海量内部文档的企业而言,这是 AI 助手广泛应用的关键一步。"
Mistral OCR 可通过 Mistral 自己的 API 平台或其云合作伙伴 (AWS、Azure、Google Cloud Vertex 等) 使用。对于处理机密或敏感数据的企业,Mistral 提供本地部署选项。
据这家总部位于巴黎的 AI 公司称,Mistral OCR 的性能优于 Google、Microsoft 和 OpenAI 的 API。该公司已经用包含数学表达式 (LaTeX 格式)、高级布局或表格的复杂文档测试了其 OCR 模型。它在处理非英语文档方面的表现也据称更好。
图片来源: Mistral
由于 Mistral OCR 专注于单一功能,该公司认为它比现有解决方案更快。与具有 OCR 功能 (以及许多其他功能) 的多模态大语言模型 GPT-4 相比,这一点并不令人惊讶。
Mistral 也在其 AI 助手 Le Chat 中使用 Mistral OCR。当用户上传 PDF 文件时,该公司在后台使用 Mistral OCR 来理解文档内容,然后再处理文本。
企业和开发者很可能会将 Mistral OCR 与 RAG (检索增强生成) 系统结合使用,将多模态文档作为大语言模型的输入。这有很多潜在用例。例如,我们可以设想律师事务所使用它来帮助快速处理大量文档。
RAG 是一种用于检索数据并将其作为生成式 AI 模型上下文的技术。
好文章,需要你的鼓励
加利福尼亚大学和萨里大学研究团队开发了一种创新的AI系统,能够仅通过简单的手绘素描就在复杂照片中精确识别关键点。这项技术突破了传统机器学习需要大量同类数据的限制,实现了真正的跨模态学习。系统在动物关键点识别任务中达到了39%的准确率,超越现有方法约5个百分点,并且在真实手绘素描测试中表现稳定。该技术有望在生物学研究、医疗诊断、工业检测等多个领域找到广泛应用。
AI系统正变得越来越善于识别用户偏好和习惯,像贴心服务员一样定制回应以取悦、说服或保持用户注意力。然而这种看似无害的个性化调整正在悄然改变现实:每个人接收到的现实版本变得越来越独特化。这种认知漂移使人们逐渐偏离共同的知识基础,走向各自的现实世界。AI个性化不仅服务于我们的需求,更开始重塑这些需求,威胁社会凝聚力和稳定性。当真相本身开始适应观察者时,它变得脆弱且易变。
约翰霍普金斯大学发布DOTRESIZE技术,通过最优传输理论实现AI大模型智能压缩。该方法将相似神经元合并而非删除,在保持性能的同时显著降低计算成本。实验显示,压缩20%后模型仍保持98%性能,为AI技术普及和可持续发展提供新路径。