Faireez 向 TechCrunch 独家透露,该公司刚刚结束秘密研发阶段,获得了 750 万美元种子轮融资。这家初创公司的目标是为公寓楼宇带来"五星级酒店式管家服务"。
这家成立于 2023 年的纽约公司致力于提供高度个性化的清洁服务。他们采用订阅模式,为每栋建筑配备专属管家 (称为 fairy),为所有订阅用户提供"一致且个性化的服务"。
Faireez 为高层公寓或公寓大楼等多户型住宅的居民提供通过网站或应用预约清洁服务的方式。有趣的是,用户可以根据具体任务预约服务,比如每天清洗餐具或每周拖地一次,而不是按小时计费。
联合创始人 Omer Agiv 和 Ori Fingerer 虽然没有透露具体收入数据,但表示公司已与"前 50 大物业管理公司和房东"建立了"合作关系",在纽约、新泽西、佛罗里达和伊利诺伊四个州提供服务。这些合作伙伴包括 Silverstein Properties、Charney Companies、First Service Residential、Ironstate 和 BNE 等,他们合计管理约 100 万套多户型住宅。
Faireez 表示正在多个方面将人工智能整合到服务中。首先,他们开发了 AI 驱动的自动扫描技术,通过视频分析住户家居情况,制定个性化清洁计划。创始人表示这项功能将于今年晚些时候推出。
Fingerer 向 TechCrunch 表示:"这种动态定价将把家政服务转变为基于 SKU 的服务,每项家务都有对应的价格标签。我们的引擎会根据规模为家务定价,并根据供需情况进行调整。"
该公司还开发了 AI 质量保证系统。例如,每次清洁都会通过带时间戳的照片记录。AI 会分析清洁前后的照片进行质量控制,并通过实时通知分享结果。
Faireez 与大型专业公司合作,从这些公司中"精心挑选前 5% 的员工"作为管家。公司为这些工作人员提供统一的规程、制服和设备。
Agiv 表示:"每次都是同一位管家服务,这样可以建立信任关系。我们使用基于 AI 的图像引擎确保每次家务都以相同的方式完成。一致性非常重要。"
Faireez 称这些管家的收入比市场平均水平高 30% 到 40%,还有资格获得奖金。
Faireez 表示,未来几个月还计划引入机器人助手协助管家完成基本家务,例如在墨西哥的管家可以远程操作美国住宅中的机器人助手。
公司设定了一个雄心勃勃的目标:到 2030 年服务 100 万套多户型住宅。
目前,Faireez 有 12 名员工。公司计划将新融资用于技术研发和美国市场扩张。计划在 2026 年进入另外四个州。创始人没有具体透露目标市场,只表示在考虑西海岸。
这并非两位创始人的首次合作。此前,他们创办了以色列啤酒行业数据公司 WeissBeerger,该公司于 2018 年被百威英博以 8000 万美元收购。
Fingerer 说:"Faireez 和 Weissbeerger 都是将高科技引入低科技领域的典范。当你观察人们在哪些事情上花费时间时,会发现日常家务就是其中之一。普通美国人一生中要花费 4.2 年时间做家务。"
Aristagora VC 领投了 Faireez 的种子轮融资,其他投资方包括 Longevity Venture Partners、Hetz Ventures、Secret Chord Ventures、RE Angels、NFX 创始合伙人 Gigi Levy-Weiss 等。
Aristagora VC 的管理合伙人 Moshe Sarfati 向 TechCrunch 表示,他认为 Faireez 正在"革新一个有着千年历史的行业"。
他说:"他们具备在'住宅建筑配套服务这片蓝海'中成为游戏规则改变者的所有条件。"
图片从左至右:Omer Agiv (CEO 兼联合创始人)、Ori Fingerer (联合创始人兼首席业务发展官) 和 Gil Kaplan (CTO 兼联合创始人)。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。