人工智能芯片初创公司 SambaNova Systems Inc. 今天宣布,他们开发了一个新的 AI 驱动的"深度研究"框架,能够以比现有研究系统快三倍的速度生成深度报告,且成本大幅降低。
该公司在博客文章中表示,已与 AI 代理开发商 CrewAI Inc. 合作创建这个新框架,使企业能够开发深度研究代理,以完全安全的方式分析其最私密的数据。
这些研究代理不依赖于 Nvidia Corp. 的图形处理器,而是使用 SambaNova 的替代性 AI 加速器,据称能提供更强大的性能并且成本更低。
获得超过 10 亿美元风险投资支持的 SambaNova 是 Nvidia 的竞争对手,专门开发适用于 AI 模型训练和推理的高性能计算芯片。这些芯片可通过云端访问,或通过公司提供的设备在本地部署。
企业可以选择在 SambaNova Cloud 上运行深度研究,据称速度是 GPU 驱动代理的三倍。如果企业本地拥有 SambaNova 强大的 SN40L 处理器,也可以完全在内部运行。这些代理使用开源大语言模型构建,如 Meta Platforms Inc. 的 Llama 3.3 70B 或 DeepSeek Ltd 的 R1,这进一步帮助降低成本。
SambaNova 解释说,现有的基于 AI 的深度研究解决方案成本极高,因为它们需要比传统聊天应用多 10 倍甚至 100 倍的 token。此外,公司表示这些工具的速度并不总是如其创建者所声称的那样快。
AI 代理路由
SambaNova 深度研究框架的一个关键要素是其"代理路由器",它能够规划并将请求路由到最合适的代理,以获得最高准确度的结果。该框架默认配备三个代理 - 通用搜索代理、深度研究代理和财务分析师,但企业可以自由添加自己的 AI 代理,并将其连接到自己的私有数据源。
该公司举例说明,如果金融交易员想要生成最新市场趋势报告。首先,交易员可能输入"总结关于 Amazon 的最新市场新闻"这样的查询。这将首先发送给通用代理,该代理将使用大约三次搜索查询来找到所有最新新闻,消耗约 1,000 个 token。
一旦交易员获得基本信息,他们可能想深入挖掘并要求"生成 Amazon 的财务分析"。在这种情况下,查询将被路由到财务分析师代理,进行更深入的研究。它提供更多细节,可能使用约 15 个提示来挖掘所需的所有信息,使用的 token 数量增加约 20 倍。
基于这个更深入的分析,交易员可能想要生成一份更全面的报告,总结并引用来自各种文章的发现。这时,深度研究代理就会介入,从数百个来源编译信息以生成最终报告,然后清理并提交给交易员。这可能需要多达 50,000 个 token。
公司强调,这些步骤都将"快如闪电",在几秒钟内完成,而不是类似 AI 研究系统可能需要的几分钟。此外,由于用户始终参与其中,他们可以确保不会在不准确的报告上浪费 token。
开源模型降低成本
由于研究过程使用如此多的 token,成本是用户的主要关注点。这解释了为什么 SambaNova 只依赖开源大语言模型,该公司指出这比专有替代方案更经济实惠。
公司表示,其提供的成本节省可以快速累积。以拥有 200 名员工的公司为例,每人每天执行 20 次深度研究查询,平均每次使用约 20,000 个 token,这将每天总计 8,000 万个 token。SambaNova 表示,在一年的时间里,这样的公司通过在 SambaNova 上使用 Llama 3.3,而不是运行 OpenAI 的 GPT-4,每年可以节省超过 100 万美元。
企业可以在此处试用 SambaNova 深度研究框架的演示,而希望将其与自己数据集成的企业可以通过克隆 GitHub 存储库开始使用。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。