突发新闻:又一科技巨头加速其 AI 研发进程。这一次的主角是 Meta,据路透社报道,该公司正在测试其首款自研的 AI 训练芯片。此举旨在降低其庞大的基础设施成本,并减少对 NVIDIA 的依赖 (据说 NVIDIA 经常让扎克伯格说出"成人用语")。如果一切顺利,Meta 希望能在 2026 年将其用于训练。
据报道,Meta 已开始小规模部署这款专用加速器芯片,该芯片专门设计用于 AI 任务 (因此比通用型 NVIDIA GPU 更节能)。在完成首次"流片"后,公司随即开始部署。流片是硅芯片开发中的一个阶段,即将完整设计送去进行制造测试。
该芯片属于 Meta Training and Inference Accelerator (MTIA) 系列,这是该公司专注于生成式 AI、推荐系统和高级研究的自研芯片系列。
去年,该公司开始使用 MTIA 芯片进行推理,这是 AI 模型在后台进行的预测过程。Meta 已开始在 Facebook 和 Instagram 的新闻推送推荐系统中使用推理芯片。据路透社报道,该公司计划也开始使用训练芯片。两种芯片的长期计划据称是从推荐系统开始,最终用于像 Meta AI 聊天机器人这样的生成式产品。
在 2022 年订购了价值数十亿美元的 GPU 后,该公司成为 NVIDIA 最大的客户之一。这是 Meta 的一个转折点,此前该公司放弃了一款在小规模测试部署中失败的自研推理芯片——这与现在正在进行的训练芯片测试类似。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。