人工智能的未来将由 AI 代理主导,OpenAI 现在正通过让开发者构建自己的 AI 代理来加速这一进程。
今天,这家 AI 公司宣布推出新的 "Responses API",该接口简化了创建和部署能够独立为用户执行任务的 AI 代理的过程。
Responses API 允许开发者创建由 OpenAI 大语言模型驱动的 AI 代理。该公司表示,这将最终取代现有的 Assistants API,后者将在约一年后退役。
OpenAI 表示,这项新服务将促进创建能够使用文件搜索工具来扫描公司内部数据集并搜索互联网的 AI 代理。这些功能类似于 OpenAI 最近发布的 Operator 代理,后者依赖于计算机使用代理 (CUA) 模型来帮助自动化数据输入等任务。
值得注意的是,OpenAI 此前已承认 CUA 模型在尝试自动化操作系统任务时不太可靠,且容易出错。因此,OpenAI 提醒开发者 Responses API 仍应被视为"早期迭代",并表示其可靠性将随时间推移而提高。
在使用 Responses API 创建 AI 代理时,开发者可以选择两种模型:GPT-4o search 和 GPT-4o mini search。据该公司介绍,这两种模型都能够自主浏览网络以寻找问题的答案,并会引用其响应所依据的来源。
这是一项重要功能,因为 OpenAI 表示,搜索网络和扫描公司私有数据集的能力可以显著提高其模型的准确性,从而提高基于这些模型的代理的性能。该公司在其自己的 SimpleQA 基准测试中展示了具有搜索功能的模型的优越性,该基准测试旨在衡量 AI 系统的虚构率。
根据 OpenAI 的数据,GPT-4o search 达到了 90% 的得分,而 GPT-4o mini search 得分为 88%。相比之下,拥有更多参数且更强大的新 GPT-4.5 模型在同样的基准测试中仅得到 63% 的分数,这是因为它缺乏搜索额外信息的能力。
尽管如此,开发者应当记住,虽然这些模型带来了改进,但搜索功能并不能完全解决 AI 的虚构或幻觉问题。基准测试分数表明,GPT-4o search 在其响应中仍有约 10% 的事实性错误。对于许多代理式 AI 工作负载来说,这样的错误率可能高得令人无法接受。
不过,OpenAI 至少希望鼓励开发者开始尝试。除了 Responses API,它还发布了一个开源的 Agents SDK,提供了将 AI 模型和代理与内部系统集成的工具。它还提供了实施安全保护和监控 AI 代理活动的工具。这是继另一个名为 Swarm 的工具发布之后的举措,Swarm 为开发者提供了管理和编排多个 AI 代理的框架。
这些新工具都是为了增加 OpenAI 大语言模型的市场份额。根据代理式 AI 创业公司 SOCi Inc. 的市场洞察总监 Damian Rollison 的说法,该公司已经在新的 Apple Intelligence 套件中将 ChatGPT 嵌入到 Apple Inc. 的 Siri 中时使用了类似的策略,使其接触到新的用户群。
"新的 Responses API 为更广泛地接触和适应 AI 代理概念打开了可能性,这些 AI 代理可能会嵌入到他们已经在使用的各种工具中," Rollison 说。
毫无疑问,一些开发者会急于看看他们能创造出什么样的 AI 代理,但重要的是要记住这些技术仍处于初期阶段,并不总是像一些用户声称的那样有效。本周早些时候,一家中国初创公司推出的名为 Manus 的 AI 代理在互联网上引起轰动,让一些早期使用者感到惊艳,但在更广泛使用后很快就显露出不足。
好文章,需要你的鼓励
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
维吉尼亚理工学院研究团队对58个大语言模型在单细胞生物学领域的应用进行了全面调查,将模型分为基础、文本桥接、空间多模态、表观遗传和智能代理五大类,涵盖细胞注释、轨迹预测、药物反应等八项核心任务。研究基于40多个公开数据集,建立了包含生物学理解、可解释性等十个维度的评估体系,为这个快速发展的交叉领域提供了首个系统性分析框架。
AMD首席执行官苏姿丰在纽约金融分析师日活动中表示,公司已准备好迎接AI浪潮并获得传统企业计算市场更多份额。AMD预计未来3-5年数据中心AI收入复合年增长率将超过80%,服务器CPU收入份额超过50%。公司2025年预期收入约340亿美元,其中数据中心业务160亿美元。MI400系列GPU采用2纳米工艺,Helios机架系统将提供强劲算力支持。
西湖大学王欢教授团队联合国际研究机构,针对AI推理模型内存消耗过大的问题,开发了RLKV技术框架。该技术通过强化学习识别推理模型中的关键"推理头",实现20-50%的内存缩减同时保持推理性能。研究发现推理头与检索头功能不同,前者负责维持逻辑连贯性。实验验证了技术在多个数学推理和编程任务中的有效性,为推理模型的大规模应用提供了现实可行的解决方案。