人工智能的未来将由 AI 代理主导,OpenAI 现在正通过让开发者构建自己的 AI 代理来加速这一进程。
今天,这家 AI 公司宣布推出新的 "Responses API",该接口简化了创建和部署能够独立为用户执行任务的 AI 代理的过程。
Responses API 允许开发者创建由 OpenAI 大语言模型驱动的 AI 代理。该公司表示,这将最终取代现有的 Assistants API,后者将在约一年后退役。
OpenAI 表示,这项新服务将促进创建能够使用文件搜索工具来扫描公司内部数据集并搜索互联网的 AI 代理。这些功能类似于 OpenAI 最近发布的 Operator 代理,后者依赖于计算机使用代理 (CUA) 模型来帮助自动化数据输入等任务。
值得注意的是,OpenAI 此前已承认 CUA 模型在尝试自动化操作系统任务时不太可靠,且容易出错。因此,OpenAI 提醒开发者 Responses API 仍应被视为"早期迭代",并表示其可靠性将随时间推移而提高。
在使用 Responses API 创建 AI 代理时,开发者可以选择两种模型:GPT-4o search 和 GPT-4o mini search。据该公司介绍,这两种模型都能够自主浏览网络以寻找问题的答案,并会引用其响应所依据的来源。
这是一项重要功能,因为 OpenAI 表示,搜索网络和扫描公司私有数据集的能力可以显著提高其模型的准确性,从而提高基于这些模型的代理的性能。该公司在其自己的 SimpleQA 基准测试中展示了具有搜索功能的模型的优越性,该基准测试旨在衡量 AI 系统的虚构率。
根据 OpenAI 的数据,GPT-4o search 达到了 90% 的得分,而 GPT-4o mini search 得分为 88%。相比之下,拥有更多参数且更强大的新 GPT-4.5 模型在同样的基准测试中仅得到 63% 的分数,这是因为它缺乏搜索额外信息的能力。
尽管如此,开发者应当记住,虽然这些模型带来了改进,但搜索功能并不能完全解决 AI 的虚构或幻觉问题。基准测试分数表明,GPT-4o search 在其响应中仍有约 10% 的事实性错误。对于许多代理式 AI 工作负载来说,这样的错误率可能高得令人无法接受。
不过,OpenAI 至少希望鼓励开发者开始尝试。除了 Responses API,它还发布了一个开源的 Agents SDK,提供了将 AI 模型和代理与内部系统集成的工具。它还提供了实施安全保护和监控 AI 代理活动的工具。这是继另一个名为 Swarm 的工具发布之后的举措,Swarm 为开发者提供了管理和编排多个 AI 代理的框架。
这些新工具都是为了增加 OpenAI 大语言模型的市场份额。根据代理式 AI 创业公司 SOCi Inc. 的市场洞察总监 Damian Rollison 的说法,该公司已经在新的 Apple Intelligence 套件中将 ChatGPT 嵌入到 Apple Inc. 的 Siri 中时使用了类似的策略,使其接触到新的用户群。
"新的 Responses API 为更广泛地接触和适应 AI 代理概念打开了可能性,这些 AI 代理可能会嵌入到他们已经在使用的各种工具中," Rollison 说。
毫无疑问,一些开发者会急于看看他们能创造出什么样的 AI 代理,但重要的是要记住这些技术仍处于初期阶段,并不总是像一些用户声称的那样有效。本周早些时候,一家中国初创公司推出的名为 Manus 的 AI 代理在互联网上引起轰动,让一些早期使用者感到惊艳,但在更广泛使用后很快就显露出不足。
好文章,需要你的鼓励
迪士尼与OpenAI达成三年合作协议,授权200多个迪士尼、皮克斯、漫威和星球大战角色用于Sora视频和ChatGPT图像生成。迪士尼将向OpenAI投资10亿美元股权,成为其主要客户。协议明确不包含真人演员肖像和声音授权,仅限动画版本角色。同时迪士尼向谷歌发出停止侵权通知,要求停止基于其IP生成内容。这标志着娱乐巨头积极拥抱AI技术变革。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
OpenAI推出GPT-5.2模型,专为专业工作场景优化。新模型在创建电子表格、制作演示文稿、编写代码等方面表现更佳。GPT-5.2 Thinking版本在多项基准测试中超越前代产品,数学问题获得满分,事实性回答错误率降低30%。该发布被视为OpenAI对谷歌Gemini 3 Pro的"红色警报"回应,旨在重新夺回AI领域领先地位。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。