人工智能初创公司 Cohere Inc. 今日发布了其最新的大语言模型 Command A,该模型能够以最少的硬件需求满足企业的高性能需求,相比竞争对手的 AI 模型具有明显优势。
这家初创公司宣称,该大语言模型的性能超过了领先的专有和开源模型,如 OpenAI GPT-4o 和 DeepSeek-V3。公司还表示,在私有部署环境中,该模型只需要两块 Nvidia 的 A100 或 H100 GPU 就能运行,而竞争对手的模型可能需要多达 32 块。
这种规模差异非常重要,因为金融和医疗保健等需要内部部署的客户,通常必须将其 AI 模型部署在防火墙内。这意味着他们需要购买昂贵的 AI 加速硬件,并且必须拥有能在企业内部环境中运行的高性能模型。
Cohere 表示:"在商业、STEM 和编程任务的人工评估对比中,Command A 与其体量更大、速度更慢的竞争对手相比,表现相当或更优——同时提供更高的吞吐量和更好的效率。"具体而言,Command A 的 token 生成速率可达到 156 tokens/秒,比 GPT-4o 快 1.75 倍,比 DeepSeek-V3 快 2.4 倍。
考虑到商业用途,该模型还具有更大的上下文窗口,达到 256,000 tokens,是行业平均水平的两倍,包括 Cohere 自己的 Command R+ 模型。这意味着该模型可以一次性处理大量文档或长达 600 页的书籍。
Cohere 联合创始人 Nick Frosst 表示:"我们只训练模型来帮助你更好地完成工作。这应该感觉像是为你的思维装上了机甲。因此,我们训练它是为了赋能于你。它应该在这方面表现得特别出色。"
该公司表示,他们专注于开发能够实现 AI 代理可扩展运营的模型功能。代理式 AI 最近已成为行业的重要趋势,旨在创建能够分析数据、做出决策并执行任务的人工智能系统,而无需或仅需最少的人工参与。在实践中,这需要大量的计算能力,要基于公司信息高效准确地完成这些任务需要训练有素的 AI 模型。
Cohere 表示,Command A 将直接集成到其安全的 AI 代理平台 North 中,该平台允许企业用户充分利用其公司数据的潜力。该平台旨在使企业 AI 代理能够使用客户关系管理、资源规划软件等工具来自动化任务。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。