人工智能初创公司 Cohere Inc. 今日发布了其最新的大语言模型 Command A,该模型能够以最少的硬件需求满足企业的高性能需求,相比竞争对手的 AI 模型具有明显优势。
这家初创公司宣称,该大语言模型的性能超过了领先的专有和开源模型,如 OpenAI GPT-4o 和 DeepSeek-V3。公司还表示,在私有部署环境中,该模型只需要两块 Nvidia 的 A100 或 H100 GPU 就能运行,而竞争对手的模型可能需要多达 32 块。
这种规模差异非常重要,因为金融和医疗保健等需要内部部署的客户,通常必须将其 AI 模型部署在防火墙内。这意味着他们需要购买昂贵的 AI 加速硬件,并且必须拥有能在企业内部环境中运行的高性能模型。
Cohere 表示:"在商业、STEM 和编程任务的人工评估对比中,Command A 与其体量更大、速度更慢的竞争对手相比,表现相当或更优——同时提供更高的吞吐量和更好的效率。"具体而言,Command A 的 token 生成速率可达到 156 tokens/秒,比 GPT-4o 快 1.75 倍,比 DeepSeek-V3 快 2.4 倍。
考虑到商业用途,该模型还具有更大的上下文窗口,达到 256,000 tokens,是行业平均水平的两倍,包括 Cohere 自己的 Command R+ 模型。这意味着该模型可以一次性处理大量文档或长达 600 页的书籍。
Cohere 联合创始人 Nick Frosst 表示:"我们只训练模型来帮助你更好地完成工作。这应该感觉像是为你的思维装上了机甲。因此,我们训练它是为了赋能于你。它应该在这方面表现得特别出色。"
该公司表示,他们专注于开发能够实现 AI 代理可扩展运营的模型功能。代理式 AI 最近已成为行业的重要趋势,旨在创建能够分析数据、做出决策并执行任务的人工智能系统,而无需或仅需最少的人工参与。在实践中,这需要大量的计算能力,要基于公司信息高效准确地完成这些任务需要训练有素的 AI 模型。
Cohere 表示,Command A 将直接集成到其安全的 AI 代理平台 North 中,该平台允许企业用户充分利用其公司数据的潜力。该平台旨在使企业 AI 代理能够使用客户关系管理、资源规划软件等工具来自动化任务。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。