看起来本周是小型 AI 模型的风头时刻。
周四,非营利 AI 研究机构 Ai2 发布了 Olmo 2 1B,这是一款拥有 10 亿参数的模型。Ai2 声称,在多个基准测试中,Olmo 2 1B 的表现超越了 Google、Meta 和阿里巴巴等公司推出的同等规模模型。参数(有时称为权重)是模型内部用于指导其行为的组成部分。
Olmo 2 1B 采用宽松的 Apache 2.0 许可证通过 AI 开发平台 Hugging Face 发布。与大多数模型不同,Olmo 2 1B 可以从零开始复现;Ai2 已经提供了用于开发该模型的代码和数据集 ( Olmo-mix-1124 , Dolmino-mix-1124 )。
虽然小型模型在能力上可能不及那些巨型模型,但重要的是,它们不需要高性能硬件运行。这使得开发人员和爱好者在面对较低端以及消费级设备的限制时,更容易使用它们。
在过去几天中,陆续发布了许多小型模型,包括 Microsoft 的 Phi 4 推理系列和 Qwen 的 2.5 Omni 3B。这些模型中的大多数——以及 Olmo 2 1B——都可以轻松在现代笔记本甚至移动设备上运行。
Ai2 表示,Olmo 2 1B 使用了由公开可用、AI 生成及人工创建的资料构成的 4 万亿 Token 数据集进行训练。Token 是模型接收并生成的原始数据单位—— 100 万个 Token 大约相当于 75 万个单词。
在衡量算术推理能力的基准测试 GSM8K 上,Olmo 2 1B 的得分优于 Google 的 Gemma 3 1B、Meta 的 Llama 3.2 1B 以及阿里巴巴的 Qwen 2.5 1.5B。在 TruthfulQA (一项评估事实准确性的测试)上,Olmo 2 1B 的表现同样超越了这三款模型。
不过,Ai2 警告称 Olmo 2 1B 也存在一定风险。该组织表示,像所有 AI 模型一样,它可能会产生“问题输出”,包括有害及“敏感”内容,以及事实不准确的陈述。因此,Ai2 建议不要在商业环境中部署 Olmo 2 1B。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。