Epoch AI(非盈利 AI 研究机构)的一项分析表明,AI 行业可能无法长期从推理 AI 模型中获得大幅性能提升。报告发现,推理模型的进展可能最快在一年内出现放缓。
例如 OpenAI 的 o3 等推理模型在近几个月内在 AI 基准测试中取得了显著进步,特别是在测评数学和编程技能的测试中。这些模型能够将更多计算资源 (computing) 应用于问题,从而提升性能,但缺点是完成任务所需的时间比传统模型更长。
推理模型的开发流程是先利用海量数据训练一个传统模型,然后应用称为强化学习 (reinforcement learning) 的技术,该技术能有效为模型在解决难题时提供 “反馈” 。
据 Epoch 指出,截至目前,像 OpenAI 这样的前沿 AI 实验室尚未在推理模型训练的强化学习阶段投入大量计算资源。
情况正在改变。OpenAI 表示,在训练 o3 时所使用的计算资源大约是其前身 o1 的 10 倍,Epoch 推测这其中的大部分计算资源都用于了强化学习。OpenAI 研究员 Dan Roberts 最近透露,公司未来计划将强化学习作为优先方向,投入的计算资源将远超初始模型训练所需的量。
不过,据 Epoch 称,在强化学习中可投入的计算资源仍然存在上限。
根据 Epoch AI 的分析,推理模型训练的扩展可能会放缓
图片来源: Epoch AI
Epoch 分析师及该报告作者 Josh You 解释说,传统 AI 模型训练带来的性能提升目前每年大约提升四倍,而强化学习带来的性能增长在 3 到 5 个月内可实现十倍增长。他进一步指出,推理训练的进展 “很可能在 2026 年与前沿水平趋于一致”。
Epoch 的分析基于若干假设,并部分采纳了 AI 公司高管的公开评论。但分析也论证了,推理模型的扩展可能因除计算资源以外的原因而面临挑战,其中包括研究所需的高昂固定成本。
Josh You 写道:“如果研究需要持续的固定开销,推理模型可能无法按照预期大幅扩展。快速扩展计算资源可能是推动推理模型进步的一个非常重要因素,因此值得密切关注。”
任何迹象表明推理模型在不久的将来可能达到某种上限,都可能让已在这类模型研发上投入巨大资源的 AI 行业感到担忧。研究已表明,虽然推理模型的运行成本极高,但它们存在严重缺陷,例如比某些传统模型更容易产生误导性信息。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。