Google 的 DeepMind 研究部门宣称,其最新 AI 代理标志着利用该技术解决数学和科学重大问题的一大步。该系统被称为 AlphaEvolve,是基于公司的 Gemini 大语言模型 ( LLMs ),并加入了一种“进化论”方法,用于评估和改进各类应用场景下的算法。
AlphaEvolve 本质上是一个 AI 编程代理,但它远超标准的 Gemini 聊天机器人。当您与 Gemini 对话时,总存在幻觉风险,即由于底层技术的非确定性,AI 可能凭空捏造细节。而 AlphaEvolve 则采用了一种独特的方法,在处理复杂算法问题时提高了准确性。
据 DeepMind 介绍,这款 AI 采用了一套自动评估系统。当研究人员与 AlphaEvolve 互动时,他们会输入一个问题以及可能的解决方案和探索方向。该模型利用了高效的 Gemini Flash 和更注重细节的 Gemini Pro,生成多种可能的解决方案,然后每个方案都会由评估器进行分析。通过进化框架,AlphaEvolve 能够专注于最优解并不断改进。
来源: Google DeepMind
该公司过去的许多 AI 系统,例如用于蛋白质折叠的 AlphaFold,都在单一知识领域内进行了大量训练。然而,AlphaEvolve 则展现出更大的动态性。DeepMind 表示,AlphaEvolve 是一款通用型 AI,能够协助任何编程或算法问题的研究。Google 已经开始在其庞大的业务体系中部署该系统,并取得了积极成果。
团队已经将 AlphaEvolve 部署在 Google Borg 集群管理系统上,用于管理其数据中心。该 AI 建议对调度启发式算法进行修改,这一改变已被采纳,使 Google 全球计算资源节约了 0.7% 。对于 Google 这样规模的企业来说,这是一项显著的财务效益。
此外,AlphaEvolve 或将使生成式 AI 的运作更为高效,而这正是实现该技术商业价值的必要条件。生成系统的内部运作依赖于矩阵乘法操作。历史上,数学家 Volker Strassen 于 1969 年提出了最有效的 4×4 复数矩阵乘法方法,但 DeepMind 表示,AlphaEvolve 已发现了一种更高效的新算法。DeepMind 过去曾通过像 AlphaTensor 这样专注领域的 AI 代理处理这一问题,尽管 AlphaEvolve 是一款通用型 AI,但其解决方案优于 AlphaTensor。
Google 的下一代 Tensor 处理硬件也将从 AlphaEvolve 中受益。DeepMind 报告称,该 AI 对芯片所使用的 Verilog 硬件描述语言进行了修改,剔除了不必要的比特,从而提升了效率。Google 目前仍在验证这一改动,但预计这将成为即将推出的处理器的一部分。
目前,只有 Google 能够调试 AlphaEvolve。虽然其耗用的计算资源比 AlphaTensor 少,但由于系统的复杂性,目前仍不对外公开。未来情况可能会有所变化,而这种高效的评估方法也有望被整合到更小型的科研 AI 工具中。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。