我们将如何应对人工智能?这是一个常见问题,但表述却相当模糊。让我们深入探讨这个话题。
在科技行业日益复杂的发展中,人们面临着诸多疑问。关于我们与AI的宏大实验将如何进行,存在着相当大的不确定性。其中一部分涉及这样一个观点:与以往的技术变革不同,AI的一部分发展将超出我们的控制范围。
这回到了我的朋友Jeremy Werthheimer等人提出的观点:我们并非完全在"工程化"大语言模型,而是在"发现"它们及其能力。
换句话说,如何"使用"一个同样能够模仿认知的工具?是你在使用它,还是它在使用你?
还有一个重要问题是人类情感。人们对AI感受如何?这个问题是否过于宽泛?
学生群体的实践
哈佛大学的一项研究显示,用户对AI有多种不同的看法。以年轻学生群体为例,一项调查发现半数学生在使用生成式AI,最常见的用途是搜索和头脑风暴。
这项涵盖1500名青少年的调查显示,一些人用AI作弊,而另一些人则以更积极的方式使用它。
Ryan Nagelhout写道:"在接受调查的青少年中,许多人承认使用AI在作业、家庭作业或考试中作弊。但尽管学术诚信仍然是成年人和青少年共同关心的问题,许多研究参与者强调了他们在生成式AI方面的积极学术体验。AI被称为'现代学习方法',其他受访青少年指出'不是所有孩子都用它在学校作弊'。"
因此,积极看待这项技术与消极看待之间存在巨大差异。
回到调查和模糊性的话题,我最近看到HubSpot的Dharmesh Shah的一次演讲,他向许多人提出了一个问题:"我们将如何与AI竞争?"
正如他指出的,这有两层含义——与AI对抗竞争,以及利用AI竞争。我必须承认,当我看到这个问题时,我想到的是与AI对抗竞争,因为这项技术有时具有令人困惑的力量,能够比我们做得更好。但Shah透露,在他的调查中,66%的受访者从协作角度理解这个问题,而34%的人像我一样理解。
他引用"ChatGPT诞生前2年"这个时间点,讨论如何回答诸如AI如何工作以及我们将走向何方等问题。
引用Geoff Hinton等人物的观点——Hinton在早期神经网络工作后变得不那么乐观——Shah还提出了一些我认为针对内行人的有趣观点,比如他开玩笑说"代币是极客们用来按音节收费的工具"。我觉得这很有趣。
代际差异的故事
Shah演讲中另一个我想重点关注的部分是他谈到自己在印度村庄的成长经历,那里没有电视,甚至没有冰箱。然后他将此与儿子作为有抱负作家的经历进行对比,这个年轻人已经参与了Shah所称的"世界构建"(类似《星球大战》或《指环王》?),这是一种卓越的编程技能,让他能够以赋权的方式探索AI的使用。
我认为这是一个引人深思的方式,说明新一代可能如何与AI共存。
利弊权衡
另一种思考方式是列举对AI最大的担忧,如就业替代、隐私伦理问题,以及人类智力能力的逐渐削弱。这些担忧需要与AI在医学等领域帮助社会以及提高多个行业生产力的潜力相平衡。
让我引用Shah演讲中的几个相关短语。
他提到了"简单交互,复杂行动",这个短语似乎体现了一种平衡——看似微小的过程与有意义步骤之间的对比。他还鼓励人们"保持好奇心",在我看来这是接触技术的正确方式。不要恐惧,也不要盲目接受——要保持好奇心,不要放弃批判性思维能力。
最后,他要求人们"志存高远,小步迭代"——换句话说,要有宏大愿景,但要谨慎引导,循序渐进,而不是盲目前进。因为在某种程度上,我们必须自己充分理解技术,才能以最佳方式进行协作。
与AI互动
要确定我们的方法,首先必须以有计划和深思熟虑的方式与技术互动。这一切都是全新的。也许几年后,我们将开发出建立这种关系的程序——或者也许孩子们会为我们找到答案。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。