Qdrant是一家开源向量数据库初创公司,拥有超过1000万次安装量。我们与创始人兼CEO Andre Zayarni进行了对话,深入了解Qdrant与通用数据库的差异化优势。
AI数据管道的核心阶段
在谈到AI训练和推理数据管道时,Zayarni强调区分训练和推理的重要性。"训练管道负责准备原始数据以微调或预训练基础模型,而推理管道专注于将这些模型应用到实际任务中。"向量搜索是推理阶段的核心:从相关数据源创建嵌入向量并存储以供快速检索,支持RAG(检索增强生成)等技术,为模型输出提供实时、上下文感知的信息增强。
多样化数据类型的处理
AI管道需要处理结构化、文件和对象数据。Zayarni指出,AI管道越来越关注非结构化数据——文件、文档、图像和代码,这些构成了模型训练和实时推理任务的骨干。结构化数据(如元数据)通常用于标记、过滤或组织内容,以实现更好的检索和控制。
向量化与存储策略
关于数据向量化,Zayarni建议使用与任务和领域相匹配的嵌入模型。一旦转换为向量,这些数据变得庞大、固定大小且在计算上密集。"通用数据库从根本上不适合高维相似性搜索,它们缺乏实时大规模检索所需的索引结构、过滤精度和低延迟执行路径。"
相比之下,专用向量数据库专为此挑战而构建,提供一阶段过滤、混合搜索、量化和智能查询规划等功能。
部署环境选择
在本地存储向量提供更多数据隐私、合规性和延迟控制,特别适合受监管行业。公有云则提供可扩展性、易于设置和托管服务访问。向量工作负载受益于快速、内存高效的存储,理想情况下具有内存映射、分层RAM-磁盘平衡和针对大型固定大小嵌入优化的I/O。
GPU集成与性能优化
Zayarni澄清了一个常见误解:"向量不用于训练模型,它们是嵌入模型处理文本或代码等原始数据的输出。"向量数据库不执行推理,而是存储和检索预计算向量以支持下游任务。
关于Nvidia GPUDirect支持,他表示这并非向量数据库的必需品。Qdrant使用Vulkan API实现平台无关的GPU加速索引,允许团队在Nvidia、AMD或集成GPU上受益于更快的数据摄取。
安全与治理考量
AI管道通常涉及敏感或专有数据,因此需要强大的访问控制和治理。这包括细粒度API密钥权限、多租户隔离和基于角色的访问控制。混合和私有云部署支持提供了在不影响性能的情况下执行安全策略的灵活性。
AI代理与MCP集成
在AI代理应用中,模型控制协议(MCP)为代理提供了在推理循环中与外部内存交互的标准化方式。向量数据库通常用作这种内存层,代理查询与文档、代码或对话相关的嵌入。
Zayarni建议AI代理应遵循与人类用户相同的零信任原则,通过严格的身份验证和范围访问确保安全、合规的交互。向量级API密钥权限、多租户和云端角色基于访问控制等功能确保了安全的代理交互。
好文章,需要你的鼓励
33年后,贝尔纳多·金特罗决定寻找改变他人生的那个人——创造马拉加病毒的匿名程序员。这个相对无害的病毒激发了金特罗对网络安全的热情,促使他创立了VirusTotal公司,该公司于2012年被谷歌收购。这次收购将谷歌的欧洲网络安全中心带到了马拉加,使这座西班牙城市转变为科技中心。通过深入研究病毒代码和媒体寻人,金特罗最终发现病毒创造者是已故的安东尼奥·恩里克·阿斯托尔加。
悉尼大学和微软研究院联合团队开发出名为Spatia的创新视频生成系统,通过维护3D点云"空间记忆"解决了AI视频生成中的长期一致性难题。该系统采用动静分离机制,将静态场景保存为持久记忆,同时生成动态内容,支持精确相机控制和交互式3D编辑,在多项基准测试中表现优异。
人工智能安全公司Cyata发现LangChain核心库存在严重漏洞"LangGrinch",CVE编号为2025-68664,CVSS评分达9.3分。该漏洞可导致攻击者窃取敏感机密信息,甚至可能升级为远程代码执行。LangChain核心库下载量约8.47亿次,是AI智能体生态系统的基础组件。漏洞源于序列化和反序列化注入问题,可通过提示注入触发。目前补丁已发布,建议立即更新至1.2.5或0.3.81版本。
马里兰大学研究团队开发ThinkARM框架,首次系统分析AI推理过程。通过将思维分解为八种模式,发现AI存在三阶段推理节律,推理型与传统AI思维模式差异显著。研究揭示探索模式与正确性关联,不同效率优化方法对思维结构影响各异。这为AI系统诊断、改进提供新工具。