随着深度研究功能和其他AI驱动分析的兴起,越来越多的模型和服务致力于简化这一流程,并能读取企业实际使用的更多文档。
加拿大AI公司Cohere正依靠其模型,包括新发布的视觉模型,来证明深度研究功能也应该针对企业用例进行优化。
该公司发布了Command A Vision,这是一个专门针对企业用例的视觉模型,基于其Command A模型构建。这个1120亿参数的模型能够"通过文档光学字符识别(OCR)和图像分析,从视觉数据中挖掘有价值的洞察,并做出高度准确的数据驱动决策",该公司表示。
"无论是解读包含复杂图表的产品手册,还是分析现实场景照片进行风险检测,Command A Vision都能出色应对最具挑战性的企业视觉任务",该公司在博客文章中说道。
这意味着Command A Vision能够读取和分析企业最常需要的图像类型:图表、图形、示意图、扫描文档和PDF。
由于基于Command A的架构构建,Command A Vision只需要两个或更少的GPU,就像文本模型一样。该视觉模型还保留了Command A的文本能力,能够读取图像上的文字并理解至少23种语言。Cohere表示,与其他模型不同,Command A Vision降低了企业的总体拥有成本,并且完全针对企业的检索用例进行了优化。
Cohere如何构建Command A
Cohere表示,它采用了Llava架构来构建Command A模型,包括视觉模型。这种架构将视觉特征转换为软视觉Token,可以分为不同的图块。
这些图块被传递到Command A文本塔,"一个密集的1110亿参数文本大语言模型",该公司说。"以这种方式,单个图像最多消耗3328个Token。"
Cohere表示,它分三个阶段训练视觉模型:视觉-语言对齐、监督微调(SFT)和带有人类反馈的强化学习后训练(RLHF)。
"这种方法使图像编码器特征能够映射到语言模型的嵌入空间",该公司说。"相比之下,在SFT阶段,我们在多样化的指令跟随多模态任务集上同时训练视觉编码器、视觉适配器和语言模型。"
企业AI的可视化
基准测试显示,Command A Vision在性能上超越了其他具有类似视觉能力的模型。
Cohere在九项基准测试中将Command A Vision与OpenAI的GPT 4.1、Meta的Llama 4 Maverick、Mistral的Pixtral Large和Mistral Medium 3进行了比较。该公司没有提及是否测试了针对Mistral专注于OCR的API Mistral OCR。
Command A Vision在ChartQA、OCRBench、AI2D和TextVQA等测试中得分超过其他模型。总体而言,Command A Vision的平均得分为83.1%,相比之下GPT 4.1为78.6%,Llama 4 Maverick为80.5%,Mistral Medium 3为78.3%。
目前大多数大语言模型都是多模态的,意味着它们可以生成或理解照片或视频等视觉媒体。然而,企业通常使用更多图形化文档,如图表和PDF,因此从这些非结构化数据源中提取信息往往困难重重。
随着深度研究的兴起,引入能够读取、分析甚至下载非结构化数据的模型的重要性不断增长。
Cohere还表示,它正在开放权重系统中提供Command A Vision,希望那些希望摆脱封闭或专有模型的企业开始使用其产品。到目前为止,开发者们表现出了一定的兴趣。
Q&A
Q1:Command A Vision是什么?它有什么特殊能力?
A:Command A Vision是Cohere公司发布的1120亿参数企业级视觉模型,专门针对企业用例设计。它能够通过文档光学字符识别(OCR)和图像分析从视觉数据中挖掘有价值的洞察,读取和分析图表、图形、示意图、扫描文档和PDF等企业常用图像类型。
Q2:Command A Vision相比其他模型有什么优势?
A:Command A Vision只需要两个或更少的GPU就能运行,降低了企业的总体拥有成本。在基准测试中,它的平均得分达到83.1%,超过了GPT 4.1的78.6%、Llama 4 Maverick的80.5%等竞争对手,并且支持至少23种语言。
Q3:Command A Vision采用了什么技术架构?
A:Command A Vision采用Llava架构构建,将视觉特征转换为软视觉Token并分为不同图块,然后传递到1110亿参数的文本大语言模型中处理。训练过程分为三个阶段:视觉-语言对齐、监督微调和带有人类反馈的强化学习后训练。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。