Scality宣布其RING对象存储系统已准备好支持检索增强生成(RAG)工作流,可与向量数据库和LangChain框架结合,为GPT等AI模型提供数据支持。
LangChain提供了将外部数据、内存和工具集成到AI工作流中的工具。在这种情况下,外部数据就是Scality的RING对象存储。向量数据库存储通过数学计算得出的向量,这些向量代表非结构化数据标记化片段的多个方面和维度。GPT或Llama等生成式AI模型只有在客户专有的非结构化数据被转换为向量并提供给它们时,才能在生成响应时使用这些数据。
如果没有这样的向量化处理,RING存储的数据对模型来说是不可见的。AI模型通常在静态、通用数据上进行训练。RAG(检索增强生成)技术让它们能够访问客户的专有数据,这些数据可以是静态的(历史数据)、当前的(实时数据)或两者兼有。这意味着模型能够更好地理解请求的背景和数据环境,从而提供更有针对性的响应。
Scality可以使用LangChain工具将选定的RING内容进行向量化,将其存储在Milvus向量数据库中,并使其可用于GPT-3.5、GPT-4、Llama等AI模型。
根据Scality的文章解释,向量嵌入以代表其含义的方式表示非结构化源数据。输入请求本身也被向量化,输入向量集提供了输入请求含义的抽象表示。然后,大语言模型或智能体在存储从Scality RING系统生成向量的Milvus数据库中搜索相似的向量。
Scality表示:"这使系统能够检索与用户查询在语义上匹配的内容。"例如,询问"如何管理2型糖尿病?"的输入查询可能使模型检测并使用关于"胰岛素敏感性"或"低升糖指数饮食"的文档,因为在语义搜索terms中,它们与输入请求生成的向量集接近。
向量数据库提供基于索引技术的近似最近邻(ANN)等搜索功能。ANN在非常大的搜索空间中寻找与输入模式最接近的近似模式。搜索空间如此之大,以至于逐一检查每个数据点以找到绝对最匹配项是不现实的,会耗费太长时间。
Scality选择Milvus而非其他向量数据库,是因为其查询速度、可扩展性、直接的LangChain集成以及在不同类型数据集上的精度。
公司提供了RING-LangChain-Milvus-GPT 3.5交互的代码示例。
AI推理和训练越来越关注对象存储,而不仅仅是文件存储。Cloudian、DDN、MinIO和VAST Data等供应商都在强调其作为RAG源数据存储和AI管道支持功能的优势。我们可能期待Scality进一步发展这一领域,通过更深入和扩展的功能组件集成来完善其解决方案。
Q&A
Q1:Scality RING如何支持RAG工作流?
A:Scality RING对象存储通过与LangChain框架和向量数据库结合,可以将存储的非结构化数据向量化,然后存储在Milvus向量数据库中,使GPT等AI模型能够访问和使用客户的专有数据进行响应生成。
Q2:为什么需要将数据向量化才能被AI模型使用?
A:因为AI模型通常在静态、通用数据上训练,无法直接理解非结构化数据。通过向量化处理,数据被转换为数学向量形式,代表其含义和维度,这样AI模型就能理解和使用这些专有数据。
Q3:Scality为什么选择Milvus作为向量数据库?
A:Scality选择Milvus是因为其查询速度快、可扩展性强、能直接与LangChain集成,并且在不同类型数据集上具有高精度,这些特性使其成为支持RAG工作流的理想选择。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。