近日,蚂蚁数科升级推出能源电力时序大模型EnergyTS 2.0,参数规模在1.0基础上从1B扩展至7B,可以应对更为复杂的能源预测任务。根据在Energy-EVA基准上的测试结果,EnergyTS 2.0在光伏发电功率预测、风力发电功率预测和用电负荷预测三项任务中的准确率表现优于多个现有主流时序大模型。
据悉,EnergyTS 2.0采用混合专家(MoE)架构,通过融合气象、地理、日历等多元协变量信息,能显著提升光伏发电、风力发电及用电负荷预测的精准度,破解新能源弃风弃电、投资收益波动等核心痛点。
为推动行业技术评估标准化和协同发展,蚂蚁数科同步开源了能源电力垂类评测基准Energy-EVA。该基准整合多个公开数据集,涵盖光伏发电、风力发电和用电负荷三大核心场景,包含超过1122万个时序数据点。
今年3月,蚂蚁数科EnergyTS能源电力时序大模型正式发布,基于该模型构建的智能体相继投入应用,覆盖新能源资产投资决策、电力交易辅助、能源系统运行优化、设备运维管理等场景,助力协鑫能科、霍普等企业最小化能源成本、最大化投资回报。
好文章,需要你的鼓励
浙江大学研究团队开发了ContextGen,这是首个能够同时精确控制多个对象位置和外观的AI图像生成系统。该系统通过情境布局锚定和身份一致性注意力两大创新机制,解决了传统AI在多对象场景中位置控制不准确和身份保持困难的问题,并创建了业界首个10万样本的专业训练数据集,在多项测试中超越现有技术。
上海交通大学研究团队开发的SR-Scientist系统实现了人工智能在科学发现领域的重大突破。该系统能够像真正的科学家一样,从实验数据中自主发现数学公式,通过工具驱动的数据分析和长期优化机制,在四个科学领域的测试中比现有方法提高了6%-35%的精确度。这标志着AI从被动工具转变为主动科学发现者的重要里程碑。