GPT-4o mini模型自己承认是基于GPT-3.5架构的模型,有图有真相:

GPT-4o mini("o"代表"omni")是小型型号类别中最先进的型号,也是OpenAI迄今为止最便宜的型号。它是多模态的(接受文本或图像输入并输出文本),具有比 gpt-3.5-turbo 更高的智能,但速度同样快。它旨在用于较小的任务,包括视觉任务。建议在之前使用 gpt-3.5-turbo 的地方选择 gpt-4o-mini ,因为此模型功能更强大且更便宜。
| 模型 | 描述 | 上下文窗口 | 训练数据 |
|---|---|---|---|
| gpt-4o-mini | 新款 GPT-4o-mini经济实惠且智能的小型型号,适用于快速、轻量级的任务。 GPT-4o mini 比 GPT-3.5 Turbo 更便宜、功能更强大。当前指向 gpt-4o-mini-2024-07-18 。 | 128,000 tokens | Up to Oct 2023 |
| gpt-4o-mini-2024-07-18 | gpt-4o-mini 当前指向此版本。 | 128,000 tokens | Up to Oct 2023 |
在Dify 0.6.14版本中没有包含gpt-4o-mini,因为当时还没发布。

在Dify官方仓库发现已经有人提交了,不过看清楚是提交给openrouter供应商的。


(1)_position.yaml文件
接下来修改下提交给openai供应商。主要是修改dify\api\core\model_runtime\model_providers\openai\llm\_position.yaml文件增加gpt-4o-mini如下:

(2)gpt-4o-mini.yaml文件
然后在dify\api\core\model_runtime\model_providers\openai\llm目录增加gpt-4o-mini.yaml文件即可:

具体就不详细解释了,仿照gpt-4o.yaml写一个,主要是修改模型的名字,以及价格。
model: gpt-4o-mini
label:
zh_Hans: gpt-4o-mini
en_US: gpt-4o-mini
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
- vision
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 4096
- name: response_format
label:
zh_Hans: 回复格式
en_US: response_format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: "0.15"
output: "0.60"
unit: "0.000001"
currency: USD

[1] gpt-4o-mini.yaml:https://github.com/sinomoe/dify/commit/9ba76915187cef8914c0bd5f6d920c82456ffcce
[2] https://platform.openai.com/docs/models/gpt-4o-mini
好文章,需要你的鼓励
字节跳动Seed团队提出的虚拟宽度网络(VWN)通过解耦嵌入宽度与主干宽度,在几乎不增加计算成本的情况下显著提升模型表示能力。8倍虚拟宽度扩展使训练效率提升2.5-3.5倍,且发现虚拟宽度因子与损失呈对数线性关系,为大模型效率优化开辟新维度。
亚马逊研究团队通过测试15个AI模型发现,当AI助手记住用户背景信息时,会对相同情感情况产生不同理解,称为"个性化陷阱"。优势社会地位用户获得更准确的情感解释,而弱势群体接受质量较低的理解。这种系统性偏见可能在心理健康、教育等领域放大社会不平等,提醒我们需要在追求AI个性化的同时确保算法公平性。
两家公司在OverdriveAI峰会上分享了AI应用经验。Verizon拥有超过1000个AI模型,用于预测客户呼叫原因和提供个性化服务,将AI推向边缘计算。Collectors则利用AI识别收藏品真伪,将每张卡片的鉴定时间从7分钟缩短至7秒,估值从8.5亿美元增长至43亿美元。
微软等机构联合研发了DOCREWARD文档奖励模型,专门评估文档的结构布局和视觉风格专业度。该模型基于包含11.7万对文档的大规模数据集训练,在人类偏好准确性测试中超越GPT-5达19.4个百分点。研究解决了现有AI工作流忽视文档视觉呈现的问题,为智能文档生成和专业化排版提供了新的技术方案。