当地时间10月3日,在Credo AI负责任的 AI 领导力峰会上,李飞飞分享了如何保护社会免受高级AI模型的潜在威胁以及为什么她认为她创办的World Labs将改变一切,在访谈中,当被问及她对“人工智能奇点”的看法时,李飞飞困惑的表示不知道这些词是什么意思,她甚至也不知道“AGI”是什么意思。
“我来自人工智能学术界,接受的是更严谨、更循证的教育,所以我真的不知道这些词是什么意思。"“坦率地说,我甚至不知道 AGI 是什么意思。就像人们说的,当你看到它的时候你就知道它是什么,我想我还没有看到它。事实上,我并没有花太多时间去思考这些词,因为我觉得还有很多更重要的事情要做......”
当“人工智能教母”都不知道“AGI”是什么意思的时候,其他人的话语权可能更低。李飞飞在2006年启动的ImageNet项目,包含超过1500万张经过标注的图片,覆盖22000个不同类别。该项目直接推动了深度学习技术的崛起。
她曾是斯坦福大学的教授,并在谷歌云担任首席科学家。此外,她还是斯坦福大学以人为本人工智能研究院的院长。由她在今年4月份新创立的World Labs公司,在9月中旬最新一轮的融资中获得了2.3亿美元,短短半年的时间估值已达到10亿美元。
OpenAI的首席执行官Sam Altman曾尝试定义AGI,将AGI描述为“相当于你可以雇佣的中等水平的人类同事”。与此同时,OpenAI的章程将AGI定义为“在大多数经济价值工作上超越人类的高自主系统”。为了衡量进展,OpenAI设定了五个内部级别:第一级是聊天机器人(比如ChatGPT),然后是推理者(OpenAI o1),智能体(接下来是这个),创新者(可以帮助发明创新),以及最后一个级别,组织者(可以完成整个组织工作的AI)。
针对此问题,谷歌在2023年11月的一份论文中,专门对AGI进行了定义。这篇论文的名称是“Position: Levels of AGI for Operationalizing Progress on the Path to AGI”(立场:在通往通用人工智能之路上实现进展的AGI层次)。
在论文中,谷歌表示:通用人工智能(AGI)是计算机研究中一个重要且有时具有争议性的概念,用来描述至少在大多数任务上与人类能力相当甚至更强的AI系统。机器学习(ML)模型快速发展,AGI已经从纯粹的哲学讨论转变为一个具有现实意义的议题。一些专家认为,最新一代的大语言模型已经出现了AGI的“火花”;一些人预测AI将在大约十年内广泛超越人类;甚至有人声称当前的LLMs已经是AGI。
为了更好地理解和衡量AGI的进展,谷歌的研究人员提出了一个新的层次化的框架,将AGI的性能、通用性和自主性分为不同的层次。这个框架基于六个原则,包括关注能力而非过程、关注通用性和性能、关注认知和元认知任务、关注潜力而非部署、关注生态效度,以及关注通往AGI的道路本身。
通用人工智能(AGI)的六个层次:从Level 0的无AI状态,到Level 1的新兴AGI,表现出基本的智能任务执行能力。Level 2的胜任AGI能在多种任务上达到人类平均水平。Level 3的专家AGI则能以专家水平执行任务。Level 4的杰出AGI在多数任务上超越专家,而Level 5的超人AGI则在广泛任务上超越人类极限。这个层次结构揭示了AI发展的逐步进步和潜在风险。
在AGI的层次之上,研究者们还提出了ASI(Artificial Superintelligence)的概念,ASI通常指的是在智能方面超越人类的AI,不仅在某个特定领域,而是在广泛的认知任务上超越。ASI能够进行自我改进和自我增强,有可能发展出人类难以理解的复杂思维模式。ASI更多是一个理论概念,目前还未有实际存在的系统。
这些概念和不同的层次让我们了解到人工智能到达的不同阶段,不过,AGI到底是什么样的,可能我们也需要真的“看到它”才能搞清楚。
好文章,需要你的鼓励
这篇研究论文揭示了多模态大语言模型(MLLMs)存在严重的模态偏差问题,即模型过度依赖文本信息而忽视图像等其他模态。研究团队通过理论分析和实验证明,这种偏差主要源于三个因素:数据集不平衡、模态骨干能力不对称以及训练目标设计不当。他们提出了系统的研究路线图和解决方案,包括增强视觉模态在数据集中的贡献、改变模型关注点和应用偏好优化策略。未来研究方向则包括开发更客观的评估指标、探索更多模态组合中的偏差问题以及应用可解释AI技术深入分析偏差机制。
ComfyMind是香港科技大学研究团队开发的一个协作式AI系统,旨在解决当前开源通用生成系统面临的稳定性和规划挑战。该系统基于ComfyUI平台,引入了两项关键创新:语义工作流接口(SWI)和带本地反馈执行的搜索树规划机制。SWI将低级节点图抽象为语义函数,而搜索树规划将生成过程视为分层决策任务。实验表明,ComfyMind在ComfyBench、GenEval和Reason-Edit三个基准测试中均大幅超越开源基线,并达到与GPT-Image-1相当的性能,为开源通用生成AI开辟了新路径。
这项研究介绍了一种名为"热带注意力"的新型注意力机制,专为解决神经网络在组合算法推理中的困境而设计。传统注意力机制使用softmax函数产生平滑的概率分布,无法精确捕捉组合算法所需的锐利决策边界。
这项研究揭示了RAG系统中位置偏见的真实影响——虽然在受控环境中明显存在,但在实际应用中却微不足道。研究人员发现,先进的检索系统不仅会找出相关内容,还会将具有干扰性的段落排在前列,超过60%的查询中至少包含一个高度干扰段落。由于相关和干扰内容同时出现在检索结果前列,位置偏见对两者都有惩罚作用,从而抵消了偏见效应。因此,基于位置偏好的复杂排序策略并不比随机排序更有效,这一发现将优化方向从段落排序重新导向检索质量提升和模型抗干扰能力增强。