国产开源之光:DeepSeek-V3划重点
DeepSeek-V3 采用了 671B 参数 MoE 架构,配备约 37B 激活单元,训练使用14.8T Token数据。
一路走来,从一个低调、但能引起行业普遍降价的选手,到现在的国产+开源之光引发全球瞩目。最近刚刚其最新的DeepSeek-V3发布后,海内外一片刷屏。本篇就划几处重点:
一句话介绍:DeepSeek-V3 采用了 671B 参数 MoE 架构,配备约 37B 激活单元,训练使用14.8T Token数据。
数学能力 / MATH 500、AIME 2024 等测试:显著优于 Claude 3.5 Sonnet 和 GPT-4o;
代码能力 / Codeforces: 同样优于其他主流大模型,刷新了SOTA。
3、极佳训练成本优势:总计消耗了 278.8 万 GPU 小时。按照 NVIDIA H800 每小时 2 美元的租赁价格计算,训练成本约为 560 万美元。(相比之下,Llama 3模型的计算消耗了3930万H100小时...)
低训练成本可能是本次DeepSeek-V3在海外产生的最大反响的一点:
DeepSeek-V3的训练仅使用了2048张H800 (然而,H800 的互连带宽较低:300 GB/s,对比 H100 的 900 GB/s,这在训练过程中可能成为性能瓶颈,因为节点间的通信效率会受到影响,为此DeepSeek提出了多种优化方案,例如自主研发通信内核而非依赖张量并行,以及采用混合精度(FP8)训练等技术来提升效率。)
(搬运官方信息)通过算法和工程上的创新,DeepSeek-V3 的生成吐字速度从 20 TPS 大幅提高至 60 TPS,相比 V2.5 模型实现了 3 倍的提升,为用户带来更加迅速流畅的使用体验。
最后,根据Artifical Analysis的独立测评报告“A new leader in open source AI”:
DeepSeek-V3在其Quality Index榜单上超过GPT-4o,仅次于o1和Gemini 2.0 Flash,与Claude 3.5 Sonnet持平。
在此前DeepSeek-V2的文章中曾经提到过其核心技术创新MLA(可见开源模型社区又一位重量级选手掀桌子),这些技术在V2得到验证后,现在也成为了V3的技术核心。此外互联网上,包括大神Andrej Karpathy也给予了极高评价:
应该表示祝贺!Congratulations to DeepSeek,也祝那些真正走在星辰大海路上的选手创造更多佳绩!
0赞好文章,需要你的鼓励
推荐文章
亚马逊在CES期间宣布推出Alexa.com网站,用户可像使用其他AI聊天机器人一样与Alexa交互。经过数月早期体验,Alexa+已获得数千万用户。新网站支持语音和文本交互,需登录使用以确保跨设备功能连续性。76%的Alexa+交互为独特任务,包括智能家居控制和第三方集成。Alexa+兼容七年来的设备,正式版将收费每月20美元或包含在Prime会员中。
SimWorld是由UCSD等多所顶尖院校联合开发的革命性AI仿真平台,基于虚幻引擎5构建了具备真实物理规律的虚拟城市环境。该平台支持无限扩展的程序化世界生成和自然语言交互,让AI智能体能够在复杂环境中学会生存、合作和竞争,为通用人工智能的发展提供了前所未有的训练平台。
AI笔记公司Plaud在CES 2026推出新款可穿戴设备NotePin S,可夹在衣领、戴在手腕或挂在脖子上记录对话。该设备通过蓝牙连接手机,配备双麦克风,录制范围约3米,支持一键高亮标记重要时刻。同时发布的还有Plaud Desktop桌面AI记录工具,可原生捕获线上会议内容,无需机器人加入通话。两款产品将所有笔记、会议和对话整合到统一平台管理。
浙江大学联合华为提出C2DLM,这是一种因果概念引导的扩散语言模型,通过自动提取因果关系并融入注意力机制来增强AI推理能力。相比传统方法,C2DLM在推理任务上平均提升1.31%-12%,训练效率提高3.2倍,为解决语言模型推理能力不足开辟了新路径。