国产开源之光:DeepSeek-V3划重点
DeepSeek-V3 采用了 671B 参数 MoE 架构,配备约 37B 激活单元,训练使用14.8T Token数据。
一路走来,从一个低调、但能引起行业普遍降价的选手,到现在的国产+开源之光引发全球瞩目。最近刚刚其最新的DeepSeek-V3发布后,海内外一片刷屏。本篇就划几处重点:
一句话介绍:DeepSeek-V3 采用了 671B 参数 MoE 架构,配备约 37B 激活单元,训练使用14.8T Token数据。
数学能力 / MATH 500、AIME 2024 等测试:显著优于 Claude 3.5 Sonnet 和 GPT-4o;
代码能力 / Codeforces: 同样优于其他主流大模型,刷新了SOTA。
3、极佳训练成本优势:总计消耗了 278.8 万 GPU 小时。按照 NVIDIA H800 每小时 2 美元的租赁价格计算,训练成本约为 560 万美元。(相比之下,Llama 3模型的计算消耗了3930万H100小时...)
低训练成本可能是本次DeepSeek-V3在海外产生的最大反响的一点:
DeepSeek-V3的训练仅使用了2048张H800 (然而,H800 的互连带宽较低:300 GB/s,对比 H100 的 900 GB/s,这在训练过程中可能成为性能瓶颈,因为节点间的通信效率会受到影响,为此DeepSeek提出了多种优化方案,例如自主研发通信内核而非依赖张量并行,以及采用混合精度(FP8)训练等技术来提升效率。)
(搬运官方信息)通过算法和工程上的创新,DeepSeek-V3 的生成吐字速度从 20 TPS 大幅提高至 60 TPS,相比 V2.5 模型实现了 3 倍的提升,为用户带来更加迅速流畅的使用体验。
最后,根据Artifical Analysis的独立测评报告“A new leader in open source AI”:
DeepSeek-V3在其Quality Index榜单上超过GPT-4o,仅次于o1和Gemini 2.0 Flash,与Claude 3.5 Sonnet持平。
在此前DeepSeek-V2的文章中曾经提到过其核心技术创新MLA(可见开源模型社区又一位重量级选手掀桌子),这些技术在V2得到验证后,现在也成为了V3的技术核心。此外互联网上,包括大神Andrej Karpathy也给予了极高评价:
应该表示祝贺!Congratulations to DeepSeek,也祝那些真正走在星辰大海路上的选手创造更多佳绩!
0赞好文章,需要你的鼓励
推荐文章
施耐德电气以“新质服务+产业向‘新’行”为主题,第六次参会,展示全新升级的“新质服务体系”,围绕创新驱动、生态协同和行业赋能三大核心领域,以全新升级的“新质服务体系”,助力中国产业向高端化、智能化、绿色化迈进。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
甲骨文正在成为大规模基础设施供应商的可靠选择。该公司通过AI技术推动应用开发,构建GenAI模型并将智能代理集成到应用套件中。CEO萨弗拉·卡茨透露,公司剩余履约义务达4553亿美元,同比增长4.6倍,并预测OCI收入将从2026财年的180亿美元增长至2030财年的1440亿美元。甲骨文正积极布局AI推理市场,凭借其作为全球最大企业私有数据托管方的优势地位,有望在云计算领域实现重大突破。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。