近年来,GPT系列这种大型人工智能系统的能力得到了指数级提升,从三年前无法解答高中水平的数学问题,到如今已经能够满分通过斯坦福大学研究生广义相对论课程考试。这些系统已经具备了记忆和整合知识的能力,它们可以调用海量信息,并以惊人的速度解读复杂内容。那么一个有趣的问题是:AI是否可以超越人类极限的高维思考,实现像爱因斯坦那样的智力飞跃?毕竟,AI语言模型基于海量参数,它们操作着一个“亿维空间”。
斯坦福大学理论物理学家、谷歌DeepMind BlueShift项目的创始人和领导者亚当·布朗(Adam Brown)表示,虽然AI拥有惊人的记忆力和知识整合能力,但它们的“推理性创造”与人类尚不可相提并论。爱因斯坦式的突破不仅是建立在已有知识上的插值(interpolation),更涉及对基础假设的质疑,以及对自然规律转变全新视角的能力。举个例子,如果一位平均智商的人类具备完美记忆力,掌握了所有的科学知识,他们是否能做出像爱因斯坦一样的思考?历史告诉我们,答案是未必。
突破往往来源于质疑现有范式,而不是简单的信息堆积。AI目前的设计更多是通过已有数据中“拟合”规律,而非“超脱”规律去发明新的科学领域。此外,许多重要的科学突破并非仅来源于算力和知识量,而是源于感知能力和直觉层面的思维灵感。例如,当人类思考四维宇宙或广义相对论所涉及的高维时,根本不是在真实的高维空间“感知”,而是通过数学符号、图形表示和直觉推导来间接理解问题。而AI,即便操作着亿维的参数空间,也未必能够获得这样的概念性灵感。
假设AI某一天能够从牛顿经典力学出发,推导出类似广义相对论的科学理论,那将标志着人类创造的机器跨越了“科学发现”的最后一个边界。但是,这个假设中仍然有难以逾越的两大难点。首先是理解与再创造,爱因斯坦广义相对论其中的核心价值,在于改变了已有定律的框架,还融合了抽象数学与物理直觉的深度联结。AI是否具备这样的能力,能否理解并重新创造这样的联结,仍然未知。另一个是新范式的产生,历史上许多突破在于采用全新的视角重构认知,例如量子力学中波粒二象性的诠释,这不仅需要技术化的解决能力,更需要突破性的“质问惯性”。AI是否真正有能力打破自己训练中获得的规律范式,也尚未获得证明。
布朗表示,从目前AI发展的速度来看,这样的跨越能力或许能在未来十年之内实现。但仍需明确的是,AI实现类似广义相对论的发明,并不一定意味着其思维本质或洞察能力真正等同于人类。AI的优势在于可以通过海量数据发现人类忽略的模式,而非从无到有地提供原始的新框架。AI更现实的角色并不是“成为爱因斯坦”,而是成为全人类的科研助手。通过大量阅读和系统分析,AI可以发现跨领域的联系,并提出基于已有数据的假设。物理学问题往往有双重本质:从描述到数学表示,然后再到解决。虽然AI在数学解题中表现卓越,但在问题本质的描述与框架建立上仍需依赖人类的主导。
随着AI技术不断进步,“人造爱因斯坦”这一构想从遥不可及逐步变得可以憧憬。但当前阶段,人工智能的长板在于海量计算与数据处理,而人类的强项则在于直觉和创新思维。一旦两者找到最佳协作方式,实现一种“人机共生”的研究生态,或许新的广义相对论就在我们眼前。
好文章,需要你的鼓励
一个目标是让来自不同组织的 AI 代理能够自由无缝地相互交流。但要实现这一点,需要实现互操作性,而这些代理可能是使用不同的 LLM、数据框架和代码构建的。为了实现互操作性,这些代理的开发者必须就如何相互通信达成一致。这是一项具有挑战性的任务。
周四,法国大型语言模型(LLM)开发商Mistral推出了一款新API,专为处理复杂PDF文档的开发者设计。Mistral OCR是一种光学字符识别(OCR)API,可以将任何PDF转换为文本文件,以便AI模型更容易地进行处理。
Google 正在测试一种全新的 AI 搜索模式,将搜索引擎转变为由 Gemini 2.0 驱动的定制聊天机器人界面。用户可以通过这个界面提问、获取答案,并深入探讨特定主题。这一模式目前作为小规模实验推出,但可能预示着 Google 搜索的未来发展方向:一种以 AI 为主导的搜索体验,可能会改变信息呈现和获取的方式。
随着科技巨头投入巨资建设新数据中心,如何在满足持续计算需求的同时保证能源系统可靠性和可持续性成为行业挑战。微电网作为潜在解决方案,可集成可再生能源、优化用电、提高电力稳定性,并在高峰期减少对电网依赖。它能够增强数据中心的弹性、实现成本效益的能源管理,并助力实现可持续发展目标。