近年来,GPT系列这种大型人工智能系统的能力得到了指数级提升,从三年前无法解答高中水平的数学问题,到如今已经能够满分通过斯坦福大学研究生广义相对论课程考试。这些系统已经具备了记忆和整合知识的能力,它们可以调用海量信息,并以惊人的速度解读复杂内容。那么一个有趣的问题是:AI是否可以超越人类极限的高维思考,实现像爱因斯坦那样的智力飞跃?毕竟,AI语言模型基于海量参数,它们操作着一个“亿维空间”。
斯坦福大学理论物理学家、谷歌DeepMind BlueShift项目的创始人和领导者亚当·布朗(Adam Brown)表示,虽然AI拥有惊人的记忆力和知识整合能力,但它们的“推理性创造”与人类尚不可相提并论。爱因斯坦式的突破不仅是建立在已有知识上的插值(interpolation),更涉及对基础假设的质疑,以及对自然规律转变全新视角的能力。举个例子,如果一位平均智商的人类具备完美记忆力,掌握了所有的科学知识,他们是否能做出像爱因斯坦一样的思考?历史告诉我们,答案是未必。
突破往往来源于质疑现有范式,而不是简单的信息堆积。AI目前的设计更多是通过已有数据中“拟合”规律,而非“超脱”规律去发明新的科学领域。此外,许多重要的科学突破并非仅来源于算力和知识量,而是源于感知能力和直觉层面的思维灵感。例如,当人类思考四维宇宙或广义相对论所涉及的高维时,根本不是在真实的高维空间“感知”,而是通过数学符号、图形表示和直觉推导来间接理解问题。而AI,即便操作着亿维的参数空间,也未必能够获得这样的概念性灵感。
假设AI某一天能够从牛顿经典力学出发,推导出类似广义相对论的科学理论,那将标志着人类创造的机器跨越了“科学发现”的最后一个边界。但是,这个假设中仍然有难以逾越的两大难点。首先是理解与再创造,爱因斯坦广义相对论其中的核心价值,在于改变了已有定律的框架,还融合了抽象数学与物理直觉的深度联结。AI是否具备这样的能力,能否理解并重新创造这样的联结,仍然未知。另一个是新范式的产生,历史上许多突破在于采用全新的视角重构认知,例如量子力学中波粒二象性的诠释,这不仅需要技术化的解决能力,更需要突破性的“质问惯性”。AI是否真正有能力打破自己训练中获得的规律范式,也尚未获得证明。
布朗表示,从目前AI发展的速度来看,这样的跨越能力或许能在未来十年之内实现。但仍需明确的是,AI实现类似广义相对论的发明,并不一定意味着其思维本质或洞察能力真正等同于人类。AI的优势在于可以通过海量数据发现人类忽略的模式,而非从无到有地提供原始的新框架。AI更现实的角色并不是“成为爱因斯坦”,而是成为全人类的科研助手。通过大量阅读和系统分析,AI可以发现跨领域的联系,并提出基于已有数据的假设。物理学问题往往有双重本质:从描述到数学表示,然后再到解决。虽然AI在数学解题中表现卓越,但在问题本质的描述与框架建立上仍需依赖人类的主导。
随着AI技术不断进步,“人造爱因斯坦”这一构想从遥不可及逐步变得可以憧憬。但当前阶段,人工智能的长板在于海量计算与数据处理,而人类的强项则在于直觉和创新思维。一旦两者找到最佳协作方式,实现一种“人机共生”的研究生态,或许新的广义相对论就在我们眼前。
好文章,需要你的鼓励
企业软件公司Infor将亚太地区作为关键增长引擎,凭借制造业软件专长和AI平台能力吸引新客户。CEO表示亚太制造业基础雄厚,是重要市场。公司专注年收入1亿至50亿美元企业,提供行业特定解决方案。通过Leap项目推动客户向云端迁移,与AWS合作解决数据主权问题。在AI方面,Infor开发智能代理功能,结合流程挖掘技术帮助企业识别低效工作流并实现实时自动化改进。
字节跳动发布Seedream 4.0多模态图像生成系统,实现超10倍速度提升,1.4秒可生成2K高清图片。该系统采用创新的扩散变换器架构,统一支持文字生成图像、图像编辑和多图合成功能,在两大国际竞技场排行榜均获第一名,支持4K分辨率输出,已集成至豆包、剪映等平台,为内容创作带来革命性突破。
企业软件支出快速增长,在IT预算中占比不断提升,给IT组织带来管理挑战。这一趋势源于对SaaS平台依赖加深、AI等领域软件产品激增。虽然更好的软件采用规则和治理结构有助控制支出,但部署困难。CIO通过减少工具扩张来控制成本,同时提升数据一致性和产品质量。专家建议建立软件资产清单,设立企业目录,并预测未来十年软件可能占IT预算一半以上。
红帽公司研究团队提出危险感知系统卡(HASC)框架,为AI系统建立类似"体检报告"的透明度文档,记录安全风险、防护措施和问题修复历史。同时引入ASH识别码系统,为AI安全问题建立统一标识。该框架支持自动生成和持续更新,与ISO/IEC 42001标准兼容,旨在平衡透明度与商业竞争,建立更可信的AI生态系统,推动行业协作和标准化。