当 OpenAI 在 12 月发布其 o3 "推理"AI 模型时,该公司与设计用于测试高性能 AI 的 ARC-AGI 基准测试的创建者合作,展示了 o3 的能力。几个月后,这些结果被修正,现在看起来比最初的结果略显逊色。
上周,负责维护和管理 ARC-AGI 的 Arc Prize Foundation 更新了 o3 的近似计算成本。该组织最初估计,他们测试的表现最好的 o3 配置版本 o3 high,解决单个 ARC-AGI 问题的成本约为 3,000 美元。现在 Arc Prize Foundation 认为这个成本要高得多 - 可能每个任务约 30,000 美元。
这次修正值得注意,因为它说明了当今最先进的 AI 模型在某些任务上可能会产生多么高的费用,至少在早期阶段是这样。OpenAI 尚未对 o3 定价 - 甚至还没有发布它。但 Arc Prize Foundation 认为 OpenAI 的 o1-pro 模型定价是一个合理的参考。
需要说明的是,o1-pro 是 OpenAI 迄今为止最昂贵的模型。
Arc Prize Foundation 的联合创始人 Mike Knoop 告诉 TechCrunch:"我们认为 o1-pro 是更接近 o3 真实成本的参考...这是由于测试时使用的计算量造成的。但这仍然只是一个参考,我们在排行榜上将 o3 标记为预览状态,以反映在官方定价公布之前的不确定性。"
考虑到该模型据报道使用的计算资源量,o3 high 的高价格并非不可思议。根据 Arc Prize Foundation 的数据,在处理 ARC-AGI 时,o3 high 使用的计算量是计算量最低的配置 o3 low 的 172 倍。
此外,关于 OpenAI 考虑为企业客户推出昂贵计划的传言已经流传了一段时间。3 月初,The Information 报道称,该公司可能计划对专门的 AI "代理"(如软件开发者代理)收取高达每月 20,000 美元的费用。
有人可能会说,即使是 OpenAI 最昂贵的模型,其成本也远低于典型的人类承包商或员工的费用。但正如 AI 研究员 Toby Ord 在 X 平台上指出的那样,这些模型可能并不那么高效。例如,o3 high 在 ARC-AGI 中需要对每个任务尝试 1,024 次才能获得最佳分数。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。