越来越多寻求构建更大AI模型的公司受到高质量训练数据不足的制约。随着科技公司在网络上搜寻更多数据来训练模型,它们可能越来越依赖潜在的敏感用户数据。Google Research团队正在探索新技术,使生成的大语言模型不太可能"记忆"任何此类内容。
大语言模型具有非确定性的输出,这意味着无法准确预测它们会说什么。虽然即使对于相同的输入,输出也会有所不同,但模型有时确实会重现训练数据中的内容——如果使用个人数据进行训练,输出可能违反用户隐私。如果受版权保护的数据进入训练数据(无论是意外还是故意),其在输出中的出现会给开发者带来不同类型的麻烦。差分隐私可以通过在训练阶段引入校准噪声来防止这种记忆。
为模型添加差分隐私在准确性和计算需求方面会带来缺点。直到现在,还没有人费心研究这在多大程度上改变了AI模型的扩展规律。该团队基于模型性能主要受噪声批次比影响的假设开展工作,该比率比较了随机化噪声的量与原始训练数据的大小。
通过运行不同模型大小和噪声批次比的实验,团队建立了对差分隐私扩展规律的基本理解,这是计算预算、隐私预算和数据预算之间的平衡。简而言之,更多噪声会导致较低质量的输出,除非用更高的计算预算(FLOPs)或数据预算(Token)来抵消。该论文详细介绍了私有大语言模型的扩展规律,这可以帮助开发者找到理想的噪声批次比,使模型更加私密。
构建VaultGemma
这项差分隐私工作催生了一个名为VaultGemma的新开放权重Google模型。该模型使用差分隐私来减少记忆的可能性,这可能改变Google在未来AI智能体中构建隐私保护的方式。不过目前,该公司的首个差分隐私模型只是一个实验。
VaultGemma基于Gemma 2基础模型,该模型比Google最新的开放模型系列落后一代。团队使用从初始测试中得出的扩展规律,以最优差分隐私训练VaultGemma。这个模型在整体规模上并不是特别大,只有10亿个参数。然而,Google Research表示VaultGemma的表现与类似规模的非私有模型相似。
该团队希望这项差分隐私扩展规律的工作将帮助其他人有效分配资源来训练私有AI模型。这可能不会改变最大和最强AI模型的运行方式——在超大型通用模型中,性能就是一切。而且无论如何,研究表明差分隐私在较小的大语言模型中效果更好,比如驱动特定AI功能的专用模型。
您现在可以从Hugging Face和Kaggle下载VaultGemma。与其他Gemma模型一样,这个模型具有开放权重,但并非完全开源。虽然Google允许您修改和分发Gemma模型,但您必须同意不将其用于恶意目的,并在任何修改版本中分发Gemma许可证的副本。
Q&A
Q1:VaultGemma是什么?有什么特别之处?
A:VaultGemma是Google发布的首个隐私保护大语言模型,基于Gemma 2基础模型构建。它使用差分隐私技术来减少模型"记忆"训练数据的可能性,从而避免在输出中泄露敏感用户数据或受版权保护的内容。
Q2:差分隐私技术是如何保护隐私的?
A:差分隐私通过在训练阶段引入校准噪声来防止模型记忆训练数据中的具体内容。这样即使模型使用了个人数据或受版权保护的数据进行训练,也不太可能在输出中重现这些敏感信息,从而保护用户隐私。
Q3:在哪里可以获取VaultGemma模型?
A:VaultGemma现在可以从Hugging Face和Kaggle下载。该模型具有开放权重,用户可以修改和分发,但需要同意不用于恶意目的,并在修改版本中包含Gemma许可证副本。
好文章,需要你的鼓励
33年后,贝尔纳多·金特罗决定寻找改变他人生的那个人——创造马拉加病毒的匿名程序员。这个相对无害的病毒激发了金特罗对网络安全的热情,促使他创立了VirusTotal公司,该公司于2012年被谷歌收购。这次收购将谷歌的欧洲网络安全中心带到了马拉加,使这座西班牙城市转变为科技中心。通过深入研究病毒代码和媒体寻人,金特罗最终发现病毒创造者是已故的安东尼奥·恩里克·阿斯托尔加。
ByteDance智能创作团队开发的DreaMontage系统能够将用户提供的零散图片和视频片段智能组合成流畅的"一镜到底"长视频。该系统通过三项关键技术突破解决了时空定位、视觉表现力和内容连贯性问题,在多项测试中显著超越现有模型。这项技术大大降低了高质量视频创作门槛,为影视制作、广告营销和内容创作提供了全新可能性。
人工智能安全公司Cyata发现LangChain核心库存在严重漏洞"LangGrinch",CVE编号为2025-68664,CVSS评分达9.3分。该漏洞可导致攻击者窃取敏感机密信息,甚至可能升级为远程代码执行。LangChain核心库下载量约8.47亿次,是AI智能体生态系统的基础组件。漏洞源于序列化和反序列化注入问题,可通过提示注入触发。目前补丁已发布,建议立即更新至1.2.5或0.3.81版本。
这项由多伦多大学领导的研究首次系统性地揭示了分词器选择对语言模型性能的重大影响。通过训练14个仅在分词器上有差异的相同模型,并使用包含5000个现实场景测试样本的基准测试,研究发现分词器的算法设计比词汇表大小更重要,字符级处理虽然效率较低但稳定性更强,而Unicode格式化是所有分词器的普遍弱点。这一发现将推动AI系统基础组件的优化发展。