微软正在扩展其基于云的Fabric数据平台,将Oracle和谷歌BigQuery数据仓库纳入镜像功能,并基于内部LinkedIn项目推出新的图数据库。
这家雷德蒙德软件巨头于2023年首次发布Fabric平台,并在同年晚些时候推出镜像功能。该功能承诺帮助用户在Fabric分析系统中添加和管理现有的云数据仓库和数据库。现在,微软新增了从谷歌和Oracle外部数据库复制快照到OneLake Delta Lake表的能力,并保持副本近实时同步。
Azure数据首席副总裁Arun Ulag表示,在Fabric中,镜像功能意味着用户无需从支持的系统中提取、转换和加载(ETL)数据,也不用构建和维护数据管道。
"快照对于创建第一个副本是必需的,建立基线,但从那时起,Fabric会持续保持数据库更新,"他说。"延迟不到五分钟,Fabric会自动保持数据库和元数据实例与原始数据同步。"
不过,Ulag表示用户可能首先需要做一些基础工作。首先,Fabric需要获得Oracle数据库的权限,如果Oracle数据库位于本地系统或防火墙后面,用户需要在防火墙后配置Fabric企业网关来连接Oracle数据库。
"镜像的计算对客户是免费的,"Ulag说。"微软承担这部分成本。我们为客户提供存储,客户不必担心存储成本。我们镜像功能的目标是让数据完全可访问,以开源格式提供,这样整个Fabric和AI堆栈都能增加价值。"
Fabric中的镜像数据存储使用Apache Parquet文件格式和Linux基金会的Delta Lake开放表格式(OTF),这是Fabric湖仓系统OneLake的原生格式。
在镜像功能方面,微软还增加了对Apache Iceberg的支持,这是起源于Netflix并被谷歌、Snowflake和Cloudera采用的开放表格式。构建Delta Lake的Databricks已承诺加强两种格式之间的集成。
用户是否愿意接受微软的这一方案可能取决于他们的起始情况。对于深度使用Power BI和早期数据仓库版本Synapse等相关产品的组织来说,这可能是合乎逻辑的选择。谷歌、AWS、Oracle、Databricks和Snowflake已经有了自己对湖仓概念的解释,他们的用户可能会有不同的看法。
微软还宣布了Fabric中的图数据库功能,这是一个用于建模和分析企业数据关系的低代码/无代码平台。Ulag解释说,该数据库是由LinkedIn团队开发的,微软于2016年收购了LinkedIn。他表示,图数据库主要用于理解Fabric中数据之间的关系。
Q&A
Q1:微软Fabric平台的镜像功能有什么优势?
A:镜像功能让用户无需进行复杂的数据提取、转换和加载(ETL)操作,也不用构建和维护数据管道。微软免费提供计算和存储资源,延迟不到五分钟就能保持数据库与原始数据同步,数据以开源格式提供,便于整个AI堆栈使用。
Q2:使用Oracle数据库镜像需要什么条件?
A:首先需要获得Oracle数据库的访问权限。如果Oracle数据库位于本地系统或防火墙后面,用户需要在防火墙后配置Fabric企业网关来连接Oracle数据库。微软承担计算和存储成本,用户主要需要解决网络连接和权限问题。
Q3:微软Fabric中的图数据库有什么用途?
A:图数据库是基于LinkedIn团队开发的技术,提供低代码/无代码平台,主要用于建模和分析企业数据关系。它能够帮助用户更好地理解Fabric平台中各种数据之间的关联和关系,为数据分析提供支持。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。