10月9日凌晨,蚂蚁集团发布万亿参数的通用语言模型 Ling-1T。Ling-1T是蚂蚁百灵大模型Ling 2.0 系列的第一款旗舰模型,也是蚂蚁百灵团队迄今为止推出的规模最大、能力最强的非思考大模型。测评显示,在有限输出 Token 条件下,Ling-1T于多项复杂推理基准中取得 SOTA 表现,展示出在高效思考与精确推理之间的卓越平衡。另外,在代码生成、软件开发、竞赛数学、专业数学、逻辑推理等多项高难度基准测试上,Ling-1T 均取得领先成绩,多项指标位居开源模型的榜首。
以竞赛数学榜单 AIME 25 (American Invitation Math Examination 25)为例,Ling-1T以平均4000+ Token的消耗达到了70.42%的准确率,优于Gemini-2.5-Pro(平均5000+ Token,准确率70.10%)。Ling-1T用更少的Token实现了更高的准确率,展现出在推理精度和思考效率综合能力上的优势。

以 AIME 25 为例,Ling-1T 拓展了推理准确率和平均推理长度的帕累托前沿
据蚂蚁百灵团队透露,Ling-1T 沿用 Ling 2.0 架构,在 20T+ tokens 高质量、高推理浓度的语料上完成预训练,支持最高 128K 上下文窗口,通过“中训练+后训练”的演进式思维链(Evo-CoT)极大提升模型高效思考和精准推理能力。
值得一提的是,Ling-1T 全程采用 FP8 混合精度训练(部分技术已开源),是目前已知规模最大的使用 FP8 训练的基座模型。这一设计为训练带来了显著的显存节省、更灵活的并行切分策略和 15%+ 的端到端加速。
在强化学习阶段,蚂蚁百灵团队创新性地提出了LPO方法(Linguistics-Unit Policy Optimization,LingPO) ,这是一种以“句子”为粒度的策略优化算法,为万亿参数模型的稳定训练提供了关键支持。这种方法既避免了词元级别的破碎感,也克服了序列级别的笼统性,使得奖励信号与模型行为在语义层面实现了更精准的对齐。
另外,蚂蚁百灵团队提出了“语法-功能-美学”的混合奖励机制,在确保代码正确、功能完善的同时持续提升这个万亿基座对视觉美学的认知。在 ArtifactsBench 前端能力基准上,Ling-1T 得分59.31,在可视化和前端开发任务领域,仅次于Gemini-2.5-Pro-lowthink的得分60.28。并以显著优势位居开源模型榜首。

ArtifactsBench 前端能力基准测试上,Ling-1T位居开源模型榜首
据了解,除了Ling-1T这款非思考模型,蚂蚁百灵团队还在训练万亿参数级的深度思考大模型Ring-1T,已在9月30日开源了preview版。目前,开发者通过Hugging Face和蚂蚁百宝箱等平台都可以体验Ling-1T模型。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。