近日,人工智能领域国际顶级学术刊物IEEE Transactions on Pattern Analysis and Machine Intelligence(即IEEE TPAMI,影响因子17.861)接收了华为云员工博士论文期间的研究成果——论文“What is a Tabby? Interpretable Model Decisions by Learning Attribute-based Classification Criteria”。华为云已进一步联合中国科学院计算技术研究所将该成果应用于华为云EI故障检测平台,并支撑铁路、电网等客户的实际故障检测业务,未来计划应用于华为云一站式AI开发平台ModelArts训练服务,向模型中引入人工先验知识,提升模型精度;并计划应用于ModelArts推理服务,帮助定位当前模型存在的问题,确定后续进一步优化的思路。
受益于深度学习技术的突破,图像分类、物体检测等传统计算机视觉任务的精度也得到了大幅度的提升,但是由于深度学习模型的复杂性,目前关于深度学习的理论并不完善。可解释的深度学习模型,以及深度学习模型与人工先验的结合是当前学术界重点研究的前沿方向,对于提升深度学习模型的可靠性和泛化能力具有重要的意义。
方法框架示意图
通过利用物体类别之间存在的层级关系约束,自动学习从数据中抽取识别不同类别的规则,该论文同时在这两个方向上迈出了坚实的一步:在可解释深度学习模型方面,相比于现有方法,不仅能够给出图像中的关键区域,还能给出规则化的解释,对使用者更友好,更符合人对于解释结果的期望;在引入人工先验知识方面,走通了一条基本可行的技术路线。
为了更好地赋能产业升级,华为云持续深耕AI基础研究和落地应用。2020年以来,华为云人工智能研究团队已在图像分类、弱标注场景下的图像分类、图像检测,多模态数据处理、语音语义等领域取得多项世界第一,研究成果多次被顶级期刊及学术会议接受。未来,华为云将持续把AI前沿算法产品化,并开放给各行业的AI开发者使用,通过技术创新驱动产业智能升级。
好文章,需要你的鼓励
卢森堡大学研究团队开发的RLDP框架首次将强化学习应用于差分隐私优化,创造性地解决了AI训练中隐私保护与模型效果的矛盾。该方法如同智能教练,能动态调整隐私保护策略,在四种语言模型上实现平均5.6%的性能提升和71%的训练时间缩短,同时增强了抗隐私攻击能力,为敏感数据的AI应用开辟了新路径。
这项由北京大学人工智能研究院完成的研究,首次从数据压缩理论角度揭示了大型语言模型存在"弹性"现象——即使经过精心安全对齐,模型仍倾向于保持预训练时的行为分布。
腾讯混元团队联合北京大学提出MixGRPO技术,通过混合ODE-SDE采样策略和滑动窗口机制,将AI图像生成训练效率提升50%-71%,同时在多项人类偏好评估指标上超越现有方法。该技术采用"从难到易"的渐进优化策略,专注于图像生成早期阶段的重点优化,并引入高阶求解器进一步加速训练过程,为AI图像生成的产业化应用提供了更高效可行的解决方案。