9月28日,浪潮人工智能研究院在京发布全球最大规模人工智能巨量模型 “源1.0”。“源”的单体模型参数量达2457亿,超越美国OpenAI组织研发的GPT-3,成为全球最大规模的AI巨量模型。“源1.0研讨会”同期举行,来自国内相关领域的院士、专家出席了研讨会,对AI巨量模型的创新与应用进行了深入研讨交流。
源1.0模型参数规模为2457亿,训练采用的中文数据集达5000GB,相比GPT3模型1750亿参数量和570GB训练数据集,源1.0参数规模领先40%,训练数据集规模领先近10倍。
“源1.0”在语言智能方面表现优异,获得中文语言理解评测基准CLUE榜单的零样本学习和小样本学习两类总榜冠军。在零样本学习榜单中,“源1.0”超越业界最佳成绩18.3%,在文献分类、新闻分类,商品分类、原生中文推理、成语阅读理解填空、名词代词关系6项任务中获得冠军;在小样本学习的文献分类、商品分类、文献摘要识别、名词代词关系等4项任务获得冠军。在成语阅读理解填空项目中,源1.0的表现已超越人类得分。

ZeroCLUE零样本学习榜(第一行为人类得分)

FewCLUE小样本学习榜(第一行为人类得分)
在对“源1.0”进行的“图灵测试”中,将源1.0模型生成的对话、小说续写、新闻、诗歌、对联与由人类创作的同类作品进行混合并由人群进行分辨,测试结果表明,人群能够准确分辨人与“源1.0”作品差别的成功率已低于50%。
巨量模型的发展备受关注。斯坦福大学李飞飞教授等人工智能领域知名学者近期在论文中表示,这类巨量模型的意义在于突现和均质。突现意味着通过巨大模型的隐含的知识和推纳可带来让人振奋的科学创新灵感出现;均质表示巨量模型可以为诸多应用任务泛化支持提供统一强大的算法支撑。
源1.0中文巨量模型的发布,使得中国学术界和产业界可以使用一种通用巨量语言模型的方式,大幅降低针对不同应用场景的语言模型适配难度;同时提升在小样本学习和零样本学习场景的模型泛化应用能力。
浪潮人工智能研究院表示,“源1.0”将面向学术研究单位和产业实践用户进行开源、开放、共享,降低巨量模型研究和应用的门槛,有效推进AI产业化和产业AI化的进步,切实为国家在人工智能研究创新和产业发展作出贡献。
好文章,需要你的鼓励
新加坡人工智能机构与阿里云发布全新大语言模型Qwen-Sea-Lion-v4,专门针对东南亚语言和文化特色进行优化。该模型结合阿里云Qwen3-32B基础模型和大量东南亚地区数据集,在东南亚语言模型评估榜单中位居开源模型首位。模型支持119种语言,能在32GB内存的消费级笔记本上运行,采用字节对编码技术更好处理非拉丁文字,并具备3.2万词元上下文长度,可执行文档级推理和摘要任务。
中科大联合快手等机构推出VR-Thinker技术,首次实现AI视频评判员的"边看边想"能力。该系统通过主动选择关键画面、智能记忆管理和三阶段训练,在视频质量评估准确率上达到75%-82%,特别擅长处理长视频场景,为AI视频生成的质量控制提供了突破性解决方案。
AI智能体是下一代业务自动化工具,不仅能对话交流,还能执行复杂任务。与ChatGPT聊天机器人不同,它们可在最少人工干预下规划并完成工作。文章介绍了五个高影响力应用:自动化客户服务解决方案、销售CRM管理、合规自动化、招聘筛选与排程、市场情报报告。这些应用都具有重复性工作流程、依赖结构化数据、遵循可预测规则等特点,能够释放员工宝贵时间用于更有价值的工作。
微软研究院发布BitDistill技术,通过三阶段优化将大型语言模型压缩至1.58位精度,在保持性能的同时实现10倍内存节省和2.65倍速度提升。该技术包括模型结构稳定化、持续预训练适应和知识蒸馏传承三个关键步骤,解决了模型量化中的性能衰减和规模化问题,为AI模型在资源受限设备上的高效部署提供了新方案。