数据与算法、算力堪称人工智能行业“三驾马车”。其中,数据从本质上决定了人工智能的落地水平。想要充分发挥人工智能技术的潜能,深度学习模型就需要海量且涵盖图像、视频及语音在内等多种类型的训练数据进行模型训练。麦肯锡的研究报告也表明:深度学习模型对训练数据的数据量、多样性和更新速度方面提出较高要求。此外,人工智能技术要求算法模型根据潜在的应用场景变化而持续更新。
在前瞻性需求方面,随着人工智能商业化进程的演进,新兴 AI 应用场景如智联网 AIoT、AI PaaS、产业互联网等将展现出巨大的发展潜力,并逐步促进 AI 技术和算法模型的优化和创新。因此,在创新应用场景和新型算法的带动下,具有前瞻性的训练数据产品和高定制化的训练数据服务需求将逐步成为主流。
云测数据总经理贾宇航结合实践案例指出,在人工智能数据市场中,数据服务商想要形成强劲的业务优势,就要摆脱同质化竞争,保持在模式、技术、服务等方面的不断发展:一是加强场景化数据的采集能力,换言之就是为人工智能细分场景的落地,提供更加垂直且丰富的数据,满足其长尾场景的需求;二是提升数据标注的准确性,从工具、规则、流程的开发制定,到标注人员的素质培养,不放过任何可以提升标注准确性的可能;三是充分发挥“底层技术+服务能力”的力量,具备更深刻的行业领域知识、更懂场景、更懂技术、更具行业前瞻性。
从细分结构来看,随着AI技术的不断成熟,更多的场景和行业开始嵌入使用AI技术,比如教育、法律、智能驾驶、银行金融等,这些AI行业应用场景逐渐趋于长尾和碎片化,产生了大量细分专业化的数据需求。对于人工智能应用来说,AI数据的精准度失之毫厘则差之千里,而在人工智能应用落地的过程中,AI数据精准度的差异会愈发的明显。
以云测数据为例,我们会发现其已经建立了数据产品、数据处理工具与数据服务的“三螺旋”,为智能驾驶、智慧城市、智能IOT、智慧金融等行业提供高效率、高质量、多维度、场景化的数据服务与策略,最大化发挥训练数据的价值,为人工智能场景化落地输送更多数据支撑。这种对AI数据的质量、效率、场景化方面提升的要求,才能推动数据要素有序发展及高效利用,助力企业在“百家争鸣”的智能化浪潮中迎头而上。
当前,以数据价值驱动的数字经济正成为推动社会前进的主要模式,AI数据作为新的生产要素声名渐显,它是人工智能长期发展的重要保障、技术研发的关键。8月17-18日,由“科创中国”大湾区联合体、深圳市科学技术协会指导的第四届智能制造创新高峰论坛系列活动将在深圳福田举办。其中,云测数据即将在系列活动之一的新产品新技术发布会中发布行业前沿趋势内容,为推动产业升级把脉新方向,值得期待。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。