数据与算法、算力堪称人工智能行业“三驾马车”。其中,数据从本质上决定了人工智能的落地水平。想要充分发挥人工智能技术的潜能,深度学习模型就需要海量且涵盖图像、视频及语音在内等多种类型的训练数据进行模型训练。麦肯锡的研究报告也表明:深度学习模型对训练数据的数据量、多样性和更新速度方面提出较高要求。此外,人工智能技术要求算法模型根据潜在的应用场景变化而持续更新。
在前瞻性需求方面,随着人工智能商业化进程的演进,新兴 AI 应用场景如智联网 AIoT、AI PaaS、产业互联网等将展现出巨大的发展潜力,并逐步促进 AI 技术和算法模型的优化和创新。因此,在创新应用场景和新型算法的带动下,具有前瞻性的训练数据产品和高定制化的训练数据服务需求将逐步成为主流。

云测数据总经理贾宇航结合实践案例指出,在人工智能数据市场中,数据服务商想要形成强劲的业务优势,就要摆脱同质化竞争,保持在模式、技术、服务等方面的不断发展:一是加强场景化数据的采集能力,换言之就是为人工智能细分场景的落地,提供更加垂直且丰富的数据,满足其长尾场景的需求;二是提升数据标注的准确性,从工具、规则、流程的开发制定,到标注人员的素质培养,不放过任何可以提升标注准确性的可能;三是充分发挥“底层技术+服务能力”的力量,具备更深刻的行业领域知识、更懂场景、更懂技术、更具行业前瞻性。
从细分结构来看,随着AI技术的不断成熟,更多的场景和行业开始嵌入使用AI技术,比如教育、法律、智能驾驶、银行金融等,这些AI行业应用场景逐渐趋于长尾和碎片化,产生了大量细分专业化的数据需求。对于人工智能应用来说,AI数据的精准度失之毫厘则差之千里,而在人工智能应用落地的过程中,AI数据精准度的差异会愈发的明显。
以云测数据为例,我们会发现其已经建立了数据产品、数据处理工具与数据服务的“三螺旋”,为智能驾驶、智慧城市、智能IOT、智慧金融等行业提供高效率、高质量、多维度、场景化的数据服务与策略,最大化发挥训练数据的价值,为人工智能场景化落地输送更多数据支撑。这种对AI数据的质量、效率、场景化方面提升的要求,才能推动数据要素有序发展及高效利用,助力企业在“百家争鸣”的智能化浪潮中迎头而上。

当前,以数据价值驱动的数字经济正成为推动社会前进的主要模式,AI数据作为新的生产要素声名渐显,它是人工智能长期发展的重要保障、技术研发的关键。8月17-18日,由“科创中国”大湾区联合体、深圳市科学技术协会指导的第四届智能制造创新高峰论坛系列活动将在深圳福田举办。其中,云测数据即将在系列活动之一的新产品新技术发布会中发布行业前沿趋势内容,为推动产业升级把脉新方向,值得期待。
好文章,需要你的鼓励
AWS与AMD联合发布Amazon EC2 M8a实例,搭载第五代AMD EPYC处理器,最高频率4.5GHz。相比M7a实例性能提升30%,性价比提升19%。支持最高192个vCPU和768GB内存,网络带宽达75Gbps,EBS带宽60Gbps。适用于Web托管、微服务架构、数据库等通用工作负载,已在美国俄亥俄、俄勒冈和欧洲西班牙区域上线。
丹麦技术大学研究团队开发出首个商业鱼类重新识别系统,通过AI技术为鱼类配备"电子身份证",解决渔业电子监控中的重复计数难题。研究采用Swin-T视觉变换器,在AutoFish数据集上达到90.43%的识别准确率,显著优于传统CNN方法。技术可实现全自动捕捞记录,为可持续渔业管理提供重要工具。
IBM发布了适用于SAP的IBM咨询应用管理套件,利用生成式和代理AI简化并加速现代化进程。SAP传统ECC系统支持将于2027年结束,但目前仅45%的组织已迁移到新的S/4HANA系统。IBM的工具可创建符合客户标准的特定代码更改,提供主动监控和影响分析。然而分析师指出,迁移工具未能解决核心问题:价值创造,因为客户需要处理多年积累的ECC系统定制化技术债务。
本田研究院开发出突破性的机器人听觉预测技术,让机器人能够通过分析当前声音预测未来几秒的音频变化。该技术采用流匹配算法,在装水和钢琴演奏实验中表现出色,装水任务达到100%成功率。这项技术将声音从辅助信息提升为核心感知能力,为机器人智能发展开辟了新方向,在制造、医疗、服务等领域具有广阔应用前景。