行业研究机构Omdia(Informa tech集团旗下)发布《中国人工智能框架市场调研报告》,指出中国AI框架市场竞争格局与创新趋势。Omdia调研发现,PyTorch、TensorFlow与MindSpore在知名度与市场份额上处于第一梯队。
人工智能随着技术的发展逐渐出现在大众眼前,作为新兴产业,市场规模不断扩大,应用场景也随着人工智能技术的成熟而扩展。从科研创新到产业应用落地,预训练大模型、AI for Science、负责任的AI等已成为全球学术界、产业界的焦点。AI框架是模型算法开发的核心,是支撑人工产业繁荣发展的基础,因此Omdia深入研究了AI框架的发展与产业趋势。
时下,以ChatGPT为代表的大模型获得的瞩目已经超越学术界、产业界,成为所有人的关注的创新成果,而大模型需要有强大的AI框架技术支撑。报告指出预训练大模型的三大趋势:第一,大模型参数量继续呈指数增长态势,“大模型”正走向“超大模型”;第二, 大模型正从单模态走向多模态、多任务融合; 第三,人工智能框架对大模型的训练有关键性的技术支撑作用。
在支持超大规模模型训练开发方面,全球领先的人工智能框架TensorFlow和PyTorch仍然占据领导地位;同时,开发者认为在中国本土人工智能框架中昇思MindSpore已占据优势地位,原生支持大模型,并孵化出了一系列创新大模型。
Omdia通过与专家深度访谈,发现TensorFlow由于有了JAX这一新生框架的融入,给业界带来更多期待;PyTorch则是依托第三方并行算法库补充了大模型支持能力;在中国本土市场上, 百度飞桨和昇思MindSpore由于有独特的中国本土语言和数据优势,更能在支持本土预训练大模型方面取得成功。
在以ChatGPT为代表的AIGC火爆的背后, 也出现了“造假”等AI伦理道德问题,人工智能开发者和机构越来越关注“负责任的人工智能”。 Omdia在对开发者的调研中发现,在所有主流人工智能框架中,TensorFlow 与MindSpore 对“负责任的人工智能”提供的支持能力最好,分别是第一与第二名。
同时,《中国人工智能框架市场调研报告》指出,“负责任的人工智能”既是一套道德准则, 又是一套技术体系。“负责任的人工智能”是以安全、可靠和合乎道德的方式开发、评估、部署和规模化人工智能系统的方法。人工智能框架引入众多的技术手段和可信AI功能模块,帮助开发者打造可信AI,帮助开发者和机构解决人工智能的安全隐私等合规性问题, 实现人工智能的可持续发展。
在科研创新领域,“AI for Science”也是人工智能行业的前沿热点,人工智能与科学的深度融合正在推动科研范式的创新,给科研领域带来了新的发展机遇。Omdia的分析师认为,与大模型类似,“AI for Science”是AI创新发展的新的重要方向,而人工智能框架对“AI for Science”的发展起着关键的技术支撑作用。“AI for Science”的发展对人工智能框架提出了更高的要求,调研发现,中国的人工智能开发者认为昇思MindSpore是最适合做 “AI for Science”项目的国产人工智能框架, 其对“AI for Science”的支持能力甚至超过了PyTorch,并有赶超TensorFlow的趋势。
人工智能框架作为AI创新的重要基础,将助力行业加速智能化转型升级。更多人工智能框架调研发现,请查看《中国人工智能框架市场调研报告》。Omdia报告链接:
https://omdia.tech.informa.com/commissioned-research/articles/china-ai-frameworks-market-report-2023
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。