目前,AGI处于研发阶段,大模型是实现AGI的重要路径。AI大模型通过预先在海量数据上进行大规模训练,而后能通过微调以适应一系列下游任务的通用人工智能模型。在“大数据+大算力+强算法”的加持下,进一步通过“提示+指令微调+人类反馈”方式,实现一个模型应用在很多不同领域。人工智能的发展已经从“大炼模型”逐步迈向了“炼大模型”的阶段,逐渐掀起多模态和多场景革命,重塑AI技术范式,提升模型能力天花板,应用价值显著提升。
大模型现状:GPT引领,百模征战。(1)ChatGPT加速迭代:从GPT-1至GPT3.5跨越4年多时间,ChatGPT发布仅一年,GPT迭代开启“加速度”,现已具备多模态能力,并搭建GPTs生态,将定制化模型从ToB推广到ToC,低门槛、低成本、定制化的特点,使得GPTs具备普及性和颠覆性。(2)国内大模型:科技型企业包括人工智能企业、垂直大模型企业和数据智能服务商相继进场,如商汤科技、度小满和滴普科技等企业,以百度、腾讯和阿里为代表的互联网云厂商占据中国通用大模型行业多数市场份额,在布局时间、基础设施建设、应用场景等方面具备明显优势。(3)爆款应用:基于ChatGPT的火爆和大模型的迭代发展,海内外AI在对话、图像、教育、办公等多个领域出现爆款应用。
大模型未来:应用多点开花,产业智能跃迁。
(1)内容变革:拥有通用性、基础性多模态、参数多、训练数据量大、生成内容高质稳定等特征的AI大模型成为了自动化内容生产的“工厂”和“流水线”,随着 GPTstore 的出现, AI 大模型将迎来自己的“APP Store”时代,AIGC 商业应用的前景愈发广阔。
(2)模型演绎:多模态模型核心目标是模拟人类大脑处理信息的方式,以更全面、综合的方式理解和生成信息,底层通用大模型目前成为最受关注、建设和提升迫切性最强的领域,中间层模型国内目前尚未出现相关玩家。
(3)AIGC主流的营收模式可分为四种:MaaS、按产出内容量付费、软件订阅付费、模型定制开发费。目前,按照产出量收费的模式占据主流,但随着底层模型即AIGC生态的建立,最具长期增长潜力并将占据主要市场规模的为MaaS模式。据量子位预测,2023年AIGC不同商业模式规模约170亿元,预期2026将翻一番,2030年有望突破万亿市场规模。
本文来自“大模型专题报告:百模渐欲迷人眼,AI应用繁花开(2024)”,大模型演进:工业革命级的生产力工具;大模型现状:GPT引领,百模征战;大模型未来:应用多点开花,产业智能跃迁。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。