目前,AGI处于研发阶段,大模型是实现AGI的重要路径。AI大模型通过预先在海量数据上进行大规模训练,而后能通过微调以适应一系列下游任务的通用人工智能模型。在“大数据+大算力+强算法”的加持下,进一步通过“提示+指令微调+人类反馈”方式,实现一个模型应用在很多不同领域。人工智能的发展已经从“大炼模型”逐步迈向了“炼大模型”的阶段,逐渐掀起多模态和多场景革命,重塑AI技术范式,提升模型能力天花板,应用价值显著提升。
大模型现状:GPT引领,百模征战。(1)ChatGPT加速迭代:从GPT-1至GPT3.5跨越4年多时间,ChatGPT发布仅一年,GPT迭代开启“加速度”,现已具备多模态能力,并搭建GPTs生态,将定制化模型从ToB推广到ToC,低门槛、低成本、定制化的特点,使得GPTs具备普及性和颠覆性。(2)国内大模型:科技型企业包括人工智能企业、垂直大模型企业和数据智能服务商相继进场,如商汤科技、度小满和滴普科技等企业,以百度、腾讯和阿里为代表的互联网云厂商占据中国通用大模型行业多数市场份额,在布局时间、基础设施建设、应用场景等方面具备明显优势。(3)爆款应用:基于ChatGPT的火爆和大模型的迭代发展,海内外AI在对话、图像、教育、办公等多个领域出现爆款应用。
大模型未来:应用多点开花,产业智能跃迁。
(1)内容变革:拥有通用性、基础性多模态、参数多、训练数据量大、生成内容高质稳定等特征的AI大模型成为了自动化内容生产的“工厂”和“流水线”,随着 GPTstore 的出现, AI 大模型将迎来自己的“APP Store”时代,AIGC 商业应用的前景愈发广阔。
(2)模型演绎:多模态模型核心目标是模拟人类大脑处理信息的方式,以更全面、综合的方式理解和生成信息,底层通用大模型目前成为最受关注、建设和提升迫切性最强的领域,中间层模型国内目前尚未出现相关玩家。
(3)AIGC主流的营收模式可分为四种:MaaS、按产出内容量付费、软件订阅付费、模型定制开发费。目前,按照产出量收费的模式占据主流,但随着底层模型即AIGC生态的建立,最具长期增长潜力并将占据主要市场规模的为MaaS模式。据量子位预测,2023年AIGC不同商业模式规模约170亿元,预期2026将翻一番,2030年有望突破万亿市场规模。
本文来自“大模型专题报告:百模渐欲迷人眼,AI应用繁花开(2024)”,大模型演进:工业革命级的生产力工具;大模型现状:GPT引领,百模征战;大模型未来:应用多点开花,产业智能跃迁。
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。