3月8日,全球AI领导者英伟达(NVIDIA)在官网推出了,生成式AI(AIGC)专业认证,通过考试可获得行业认可的权威证书。
同时英伟达也推出了相应的培训课程,包括生成式AI解释,深度学习入门/基础知识,基于Transformer 的自然语言处理,使用大语言模型进行定制应用开发,大语言模型的部署、定制、微调等,帮助学员顺利通过考试。
该认证支持远程报名和考试,适合软件工程师、数据工程师、云解决方案架构师、AI DevOps 工程师等,可增加就业竞争力成为大模型领域的专家。
认证详情地址:https://www.nvidia.com/en-us/learn/certification/generative-ai-llm-associate/
本次认证将从太平洋时间3月18日,英伟达举办的“2024 GTC”人工智能大会上开始。这也是英伟达5年来首次举办的线下技术交流大会,届时将会有900多场会议,20多场与生成式AI有关。英伟达会向全球开发者展示在生成式AI领域的创新技术和最新研究成果。
英伟达创始人兼首席执行官-黄仁勋表示,随着全球各行业、政务机构,正在积极寻求其变革能力,生成式AI已成为技术创新的焦点。
生成式AI认证和考试介绍
该认证由英伟达颁发,考试主题包括生成式AI和大语言模型两大块,考试时间1小时,包括50道题,考试费用135美元(约971元),在线远程考试方式。
考试详细内容包括:
机器学习和神经网络基础知识:探索机器学习的基本概念、算法以及神经网络的基础结构,包括前馈神经网络、卷积神经网络(CNN)和循环神经网络(RNN)等。
提示工程:在与大语言模型的交互中,设计和优化输入提示,以提高模型输出的相关性和准确性。
对齐:确保大模型的行为与人类的期望和道德标准一致,包括处理模型偏见和决策可解释性等问题。
数据分析和可视化:通过统计方法和可视化工具来分析数据集,识别数据趋势和模式,支持数据驱动的决策过程。
实验:设计和执行实验,以验证假设、评估模型性能和探索数据的特性。
数据预处理和特征工程:通过清理、转换和选择重要的数据特征来准备数据,以提高机器学习模型的性能和准确性。
实验设计:计划和构建实验框架,以系统地测试和评估不同的算法、模型和参数配置。
大语言模型的Python库:介绍专门用于开发和训练大型语言模型的Python库,如Transformers、TensorFlow、PyTorch等。
LLM集成与部署:如何将大型语言模型集成到应用程序和服务中,包括API集成、性能优化和模型部署等。
有效期:自认证自签发之日起两年内有效。可以通过重新参加考试来获得重新认证。
考试报名地址:https://www.nvidia.com/en-us/learn/organizations/contact-us/
生成式AI课程介绍
为了帮助学员顺利通过考试,英伟达推出了系统的生成式AI课程,不过有一些是收费的,而且不便宜。当然,如果你是技术大牛,不学习课程直接参加考试也是没问题的。
主要培训课程如下:
生成式AI解释:免费、2小时;
深度学习入门:8小时、90美元;
深度学习基础知识:专业教师指导,8小时、500美元;
加速数据科学基础知识:专业教师指导,8小时、500美元;
基于 Transformer 的自然语言处理简介:6小时、30美元;
构建基于 Transformer 架构的应用程序:专业教师指导,8小时、500美元;
使用大语言模型进行应用开发:专业教师指导,8小时、500美元;
使用 LLaMA-2 进行快速工程:3小时、30美元;
使用检索增强生成,来增强大语言模型:1小时、免费;
使用大语言模型开发RAG代理:6小时、30美元;
使用大语言模型开发RAG代理:专业教师指导,8小时、500美元;
课程详细地址:https://www.nvidia.com/en-us/training/online/
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。