随着人工智能技术的不断发展,其应用场景日益丰富,各行各业所汇聚的庞大数据资源为技术的实际应用和持续完善提供了坚实基础。 根据第三方咨询机构格物致胜的统计数据,2022年中国人工智能市场规模达到2058亿元,预计2023-2027年市场规模将保持28.2%的 复合增长率,2027年中国人工智能市场规模将达到7119亿元。根据statista的统计数据,2023年全球人工智能市场规模达2079亿美元, 预计2030年将增至18475亿美元。
多模态技术成为大模型主战场
多模态较单一模态更进一步,已经成为大模型主战场。人类通过图片、文字、语言等多种途径来学习和理解,多模态技术也是通过整 合多种模态、对齐不同模态之间的关系,使信息在模态之间传递。
2023年以来,OpenAI发布的GPT-4V、Google发布的Gemini、 Anthropic发布的Claude 3均为多模态模型,展现出了出色的多模态理解及生成能力。未来,多模态有望实现any to any模态的输入和 输出,包括文本、图像、音频、视频、3D模型等多种模态。
多模态大型语言模型(MLLMs)的通用架构,由1) 视觉编码器(Visual Encoder)、2) 语言模型(Language Model)和3) 适配器模块 (Adapter Module)组成。1) 负责处理和理解输入的视觉信息,通常使用预训练的视觉模型,如Vision Transformer(ViT)或其他卷积神 经网络(CNN)架构,来提取图像特征;2) 负责处理文本输入,理解和生成自然语言,语言模型基于Transformer架构,如BERT或GPT 系列模型;3) 负责在视觉和语言模态之间建立联系。
3D生成:AI生成技术的下一个突破口
3D生成技术应用广阔,但仍处在技术临界点以前。3D生成技术可广泛应用于3D虚拟人、3D人脸、3D场景等领域,目前3D生成的主 流技术路径大致可分为:1) text-to-2D,再通过NeRF或Diffusion模型完成2D-to-3D,或直接通过2D素材完成3D建模;2) 直接text-to- 3D,该路径直接使用3D数据进行训练,从训练到微调到推理都基于3D数据。
具身智能:智能涌现从虚拟世界走向物理世界
当大模型迁移到机器人身上,大模型的智能和泛化能力有望点亮通用机器人的曙光。2023年7月,谷歌推出机器人模型Robotics Transformer 2(RT-2),这是一个全新的视觉-语言-动作(VLA)模型,从网络和机器人数据中学习,并将这些知识转化为机器人控制的 通用指令。2024年3月,机器人初创企业Figure展示了基于OpenAI模型的全尺寸人形机器人Figure 01,机器人动作流畅,所有行为都 是学到的(不是远程操作),并以正常速度(1.0x)运行。
通用人工智能还有多远
通用人工智能(Artificial General Intelligence, AGI)是一种可以执行复杂任务的人工智能,能够完全模仿人类智能的行为。DeepMind提出了 一个衡量“性能”和“通用性”的矩阵,涵盖从无人工智能到超人类AGI(一个在所有任务上都优于所有人的通用人工智能系统)的五个 级别。性能是指人工智能系统的能力与人类相比如何,而通用性表示人工智能系统能力的广度或其达到矩阵中指定性能水平的任务范围。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。