量子计算行业深度研究:人工智能与新质生产力的“未来引擎”
与传统计算相比,量子计算能够带来更强的并行计算能力和更低的能耗,同时量子计算的运算能力根据 量子比特数量指数级增长,在 AI 领域具有较大潜力。海外科技巨头带动量子计 算产业发展,IBM、微软、谷歌等公司先后发布量子计算路线图,与此同时,国内量子计算产业与海外科技巨头差距不断缩小,2024 年 1 月 16 日我国第三代 自主超导量子计算机“本源悟空 ”上线运行可以一次性下发、执行 200 个量子线路的计算任务,比国际同类量子计算机具有更大的速度优势。
量子计算有望成为解决 AI 算力瓶颈的颠覆性力量。
与传统计算相比,量子 计算能够带来更强的并行计算能力和更低的能耗,同时量子计算的运算能力根据 量子比特数量指数级增长,在 AI 领域具有较大潜力。海外科技巨头带动量子计 算产业发展,IBM、微软、谷歌等公司先后发布量子计算路线图,与此同时,国 内量子计算产业与海外科技巨头差距不断缩小,2024 年 1 月 16 日我国第三代 自主超导量子计算机“本源悟空 ”上线运行可以一次性下发、执行 200 个量子 线路的计算任务,比国际同类量子计算机具有更大的速度优势。
量子计算是基于量子力学的独特行为(如叠加、纠缠和量子干扰)的计算模式,基本信息单位为量子比特。据微软,在物理学中量子是所有物理特性的最小离散单元,通常指原子或亚原子粒子(如电子、中微子和光子)的属性。量子比特是量子计算中的基本信息单位,在量子计算中发挥的作用与比特在传统计算中发挥的作用相似,但经典比特是二进制、只能存放 0 或 1 位,但量子比特可以存放所有可能状态的叠加。量子计算所运用的物理特性主要包括:
1)量子叠加:处于叠加态时,量子粒子是所有可能状态的组合,它们会不断波动,直到被观察和测量;以抛硬币为例,经典比特可以通过正面和反面来度量,而量子比特能够代表硬币的正反面以及正反交替时的每个状态;
2)量子纠缠:纠缠是量子粒子将其测量结果相互关联的能力,当量子比特相互纠缠时,它们构成一个系统并相互影响,人们可以使用一个量子比特的度量来作出关于其他量子比特的结论,通过在系统中添加和纠缠更多的量子比特,量子计算机可计算指数级的更多信息并解决更复杂的问题;
3)量子干扰:量子干扰是量子比特固有的行为,由于叠加而影响其坍缩方式的可能性,量子计算机旨在尽可能减少干扰,确保提供最准确的结果。
与传统计算相比,量子计算能够带来更强的并行计算能力和更低的能耗。据赛迪智库,量子计算通过量子态的受控演化实现数据的存储计算,可以分为数据输入、初态制备、量子逻辑门操作、量子测算和数据输出等步骤,其中量子逻辑门操作是一个幺正变换,这是一个可以人为控制的量子物理演化过程;经典计算机的运算模式为逐步计算,一次运算只能处理一次计算任务,而量子计算为并行计算,可以同时对2^n个数进行数学运算,相当于经典计算重复实施2^n次操作;同时,传统芯片的特征尺寸很小(数纳米)时,量子隧穿效应开始显著,电子受到的束缚减小,使得芯片功能降低、能耗提高,将不可逆操作改造为可逆操作才能提高芯片的集成度,量子计算中的幺正变换属于可逆操作,有利于提升芯片的集成度,进而降低信息处理过程中的能耗。
量子计算的运算能力根据量子比特数量指数级增长,在AI领域具有较大潜力。在经典计算中,计算能力与晶体管数量成正比例线性关系,而量子计算机中算力将以量子比特的指数级规模增长,据中国计算机学会微信公众号, 2012年“量子优势”(同样的计算任务,量子计算速度高于传统计算)的概念被提出,并在2019年由谷歌团队实现了实验验证,2020年,潘建伟院士团队基于高斯玻色采样模型成功构建了76个光子的量子计算原型机“九章”进一步验证了量子优势。量子计算机所能拥有的量子比特数由最初的2量子比特增长到了数百量子比特,并正以可观的速度继续增长,这为实现更可靠、更大规模的量子计算,以及挖掘基于量子计算的人工智能应用带来更多可能性。
量子计算产业上游主要包含环境支撑系统、测控系统、各类关键设备组件以及元器件等,是研制量子计算原型机的必要保障,目前由于技术路线未收敛、硬件研制个性化需求多等原因,上游供应链存在碎片化问题,逐一突破攻关存在难度,一定程度上限制了上游企业的发展,国内外情况对比而言,上游企业以欧美居多,部分龙头企业占据较大市场份额,我国部分关键设备和元器件对外依赖程度较高;
量子计算产业生态中游主要涉及量子计算原型机和软件,其中原型机是产业生态的核心部分,目前超导、离子阱、光量子、硅半导体和中性原子等技术路线发展较快,其中超导路线备受青睐,离子阱、光量子和中性原子路线获得较多初创企业关注,美国原型机研制与软件研发占据一定优势,我国量子计算硬件企业数量有限且技术路线布局较为单一,集中在超导和离子阱路线,量子计算软件企业存在数量规模较少、创新成果有限、应用探索推动力弱等问题;
量子计算产业下游主要涵盖量子计算云平台以及行业应用,处在早期发展阶段,近年来全球已有数十家公司和研究机构推出了不同类型的量子计算云平台积极争夺产业生态地位,目前量子计算领域应用探索已在金融、化工、人工智能、医药、汽车、能源等领域广泛开展,国外量子计算云平台的优势体现在后端硬件性能、软硬件协同程度、商业服务模式等方面。大量欧美行业龙头企业成立量子计算研究团队,与量子企业联合开展应用研究,我国下游行业用户对量子计算重视程度有限,开展应用探索动力仍需提升。
2023年全球量子计算市场规模约47亿美元,预计2035年有望超过8000亿美元。据ICV,随着量子计算技术的不断演进,以及AI技术等领域的快速发展,量子计算的应用边界被不断拓展,2023年,全球量子产业规模达到47亿美元,2023至2028年的年平均增长率(CAGR)达到44.8%;2027年专用量子计算机预计将实现性能突破,带动整体市场规模达到105.4亿美元,参考IBM 2023年量子计算路线图,2028年量子门数量、以及纠错等计算技术将达到较为成熟阶段,在2028年至2035年,市场规模将继续迅速扩大,受益于通用量子计算机的技术进步和专用量子计算机在特定领域的广泛应用,到2035年总市场规模有望达到8117亿美元。
据信通院等,金融、化工、生命科学领域有望更加受益量子计算产业发展:
1)金融领域:量子计算应用有望在优化预测分析、精准定价和资产配置等问题中产生优势。案例包括2023年法国CIB、Pasqal和Multiverse联合发布量子计算金融应用解决方案的验证结果,减少金融衍生品估值计算所耗算力资源,提升评估速度与准确性等;
2)化工领域:量子计算应用探索主要通过模拟化学反应,达到提高效率、降低资源消耗等目的。案例包括2023 年德国尤利希中心利用量子计算提升寻找蛋白质最低能量结构的成功率,牛津大学实现基于网格的量子计算化学模拟,探索基态准备、能量估计到散射和电离动力学等方面能力等;
3)生命科学:量子计算可以用于评估药物研发的成本、时间、性能等实验值。案例包括AWS制药解决方案,通过针对某些药物研发问题的内置示例代码,例如分子对接、蛋白质折叠、RNA 折叠和逆合成规划,进行量子计算完成任务;
4)密码学:使用量子机密对安全数据进行加密和传输的各种网络安全方法。但它有可能比以前的加密算法类型安全得多,甚至在理论上是不可破解的;
5)交通物流:量子计算应用主要聚焦组合优化问题,以更优方案实现路线规划和物流装配,提升效率降低成本。案例包括2023 年,Terra Quantum 和泰雷兹公司使用混合量子计算验证加强卫星任务规划过程并改善卫星运行效率,英伟达、罗尔斯-罗伊斯和 Classiq 将量子计算用于提升喷气发动机的工作效率;
0赞 好文章,需要你的鼓励
推荐文章
戴尔在约一年之前推出了其Apex Red Hat OpenShift服务,支持在戴尔PowerEdge服务器上运行Red Hat OpenShift容器编排服务及带有SSD的PowerFlwx块存储。APEX是戴尔提供的一组服务,通过类似公有云的订阅模式提供计算、存储和网络设备。
第四次农业革命即将到来。包括物联网(IoT)部署(即用于收集和传输数据的数字化设备)以及AI在内的技术进步,正将效率推向新的顶点,并有望再次从根本上改变人类宰治整个地球的具体方式。
通过收购 Cradlepoint 和 Ericom 时所继承的知识产权、人力资本、渠道合作伙伴关系和客户关系(爱立信称全球有 36,000 多家企业)仍然是其发展主张的核心,并且基本上保持不变——尽管要将三家公司一个整体运作需要大量的后勤工作,但三家公司的合并同样是为了将爱立信的技术和专业知识转化为其服务属性。
沃达丰发布的《2024年顺应未来报告》(以下简称“顺应未来”报告)中揭示了一个激动人心的趋势:中国企业在拥抱数字化转型方面表现积极,在亚太地区排名第二,仅次于新加坡。然而,报告也引发了人们的疑问:人工智能的迅速发展究竟是信任的催化剂,还是担忧的制造者?中国企业如何在科技创新与社会责任之间取得平衡,并利用技术赢得消费者信任,实现长期增长?