而在4月30日,Altman就提起过该模型非常喜欢GPT-2。按道理说一个只有15亿参数在2019年发布的开源模型,被反复提及两次就很不寻常。
更意外的是GPT-2曾短暂上榜LMSYS的聊天机器人竞技场性能媲美GPT-4、Claude Opus等模型。
很多人猜测,难道这是OpenAI即将发布的GPT-4.5、GPT-5?但在5月2日的一场公开演讲中,Altman否认了这个说法。
GPT-2开源地址:https://github.com/openai/gpt-2
论文地址:https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

从GPT-2展示出的性能来看有一点是可以肯定的,OpenAI掌握了一种新的训练、微调模型方法,可将小参数模型的性能训练的和大参数模型一样优秀,就像微软刚发布的Phi-3系列模型。
所以,这可能是一款针对手机、平板等移动设备的高性能、低消耗模型。因为,微软、谷歌、Meta等科技巨头都发布了针对移动端的大模型,唯独OpenAI迟迟没有发布。
加上苹果正在与OpenAI、谷歌洽谈希望在iOS 18中使用GPT系列模型来增强用户体验和产品性能。非常善于营销的Altman用这种“新锅抄旧菜”的方法进行病毒式宣传来赢得苹果的信任。
一方面,可以极大展示自己模型的性能与技术实力;另一方面给谷歌造成压力,虽然其Gemini系列是针对移动端的,但在市场应用方面并没有太多的反响。

开发移动端的大模型都有一个非常相似的技术特点,就是参数都非常小。例如,微软刚发布的Phi-3系列模型,最小的只有13亿参数;谷歌的Gemini系列模型最小的只有18亿。
这是因为,参数越大模型的神经元就越多对硬件的要求也就越高。如果想部署在移动端的大模型需要考虑电池、存储空间、算力、延迟、推理效率等因素,才能在有限的硬件空间内发挥出最大的性能。例如,直接使用一个1000亿参数的模型,可能还没问几下电池先耗尽了。
此外,在移动设备对推理的效率要求也很高。目前手机端的延迟大概是web、PC端的数倍,如果想更好地使用语音助手、实时翻译、文本问答这些功能,也是使用小参数模型的主要原因之一。

所以,OpenAI使用在2019年开源的15亿参数GPT-2模型来实验最合适不过了,并且架构也是基于Transformer,基本上是GPT-3、GPT-4的先辈模型。
当然,如果未来OpenAI真的发布面向移动端的小参数模型,名字肯定不会再叫GPT-2,大概会起GPT-4 mini/little一类的吧。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。