5月9日消息,阿里云正式发布通义千问2.5,模型性能全面赶超GPT-4 Turbo,成为地表最强中文大模型。同时,通义千问最新开源的1100亿参数模型在多个基准测评收获最佳成绩,超越Meta的Llama-3-70B,成为开源领域最强大模型。
相比通义千问2.1版本,通义千问2.5的理解能力、逻辑推理、指令遵循、代码能力分别提升9%、16%、19%、10%,中文能力更是持续领先业界。在权威基准OpenCompass上,通义千问2.5得分追平GPT-4 Turbo,是该基准首次录得国产大模型取得如此出色的成绩。
通义还发布了最新款开源模型,1100亿参数的Qwen1.5-110B,该模型在MMLU、TheoremQA、GPQA等基准测评中超越了Meta的Llama-3-70B模型;在HuggingFace推出的开源大模型排行榜Open LLM Leaderboard上,Qwen1.5-110B冲上榜首,再度证明通义开源系列业界最强的竞争力。
通义的多模态模型和专有能力模型也具备业界顶尖影响力。通义千问视觉理解模型Qwen-VL-Max在多个多模态标准测试中超越Gemini Ultra和GPT-4V,目前已在多家企业落地应用;通义千问代码大模型CodeQwen1.5-7B则是HuggingFace代码模型榜单Big Code的头名选手,还是国内用户规模第一的智能编码助手通义灵码的底座。
通义大模型问世一年多来,还发展出了业界领先的文生图、智能编码、文档解析、音视频理解等能力,企业客户和开发者可以通过API调用、模型下载等方式接入通义,个人用户可从通义APP、官网和小程序免费使用通义家族全栈服务。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。