
传统云计算及相应算法产生的数据流基本为占用内存小、波动范围小的流量,因此虽然网络为非全局路由,按照既定策略为流量分配路径也不会过多出现拥塞;AI 计算产生的数据流中大象流(Elephant Flow)显著增加,对于少数被分配较多大象流的路径,其传输时间将显著高于大部分路径,这就会产生“长尾效应”,大部分路径传输完成后闲置等待少数路径完成传输,系统利用率因此打折扣。

不同计算进程间数据共接收端,容易出现“受害者流量”。AI 推理集群必然会出现多个负载处理多个用户需求或多条并发请求的情况,不同负载由不同端口输出数据,传输路径上有共用的叶、脊交换机,则共接收端的“多传一”(Many-To-One)现象容易出现网络背压、拥塞传播甚至丢包。
例如下图中,负载 A 由网卡 1、2、3 输出的路径与负载 B 由网卡 4 输出的路径共用交换机 a,且路径 3 与路径 4 共用交换机 b,在常规网络架构下,路径 1、2、3 均按最大带宽连接交换机 a,交换机 a 处出现拥塞,网路背压导致连接交换机 b 的路径也出现拥塞,路径 4 数据流的稳态带宽受到影响,成为“受害者流量”(Victim Flow)。

RDMA 网络如何解决潜在问题?“自适应路由”基于网卡及交换机,可解决“大象流”带来的长尾效应。
1)交换机根据各端口数据输出队列状态判断该端口的负荷情况,并将新数据路由至当前负荷最小的端口/路径,这样可有效实现各端口负载均衡;
2)重新路由后的数据一般会按照与原序列不同的顺序到达网卡,网卡利用 DDP 协议(数据报文中的 DDP 前缀包含识别数据原存储位置的信息)将接收到的数据按照原顺序存放。针对 AI 计算中显著增加的“大象流”,自适应路由通过动态监控各端口传输负荷并按此分配路径,均衡负载,解决长尾问题。


交换机拥塞控制算法+缓存池化实现性能隔离。1)各节点交换机实时监控传输速率及拥塞程度,由交换机芯片接收处理该节点及相邻节点的检测数据,并基于拥塞控制算法调节各相关交换机的传输速率;2)交换机将物理缓存池化,根据不同端口的接收、传输速率分配缓存。
芯片支持容量提升,增加 RoCE 配套功能。交换机芯片支持的容量迭代提升是必然趋势,博通 Tomahawk 5 总容量达 51.2T,支持 64 个端口单口带宽达 800G,相比上代翻倍,英伟达 Spectrum-X800 交换机总容量 51.2T、端口 64 个,分别是上一代的 4 倍和两倍;同时前一章中提到 RoCE 实现的自适应路由、拥塞控制及缓存池化分配等功能均需要交换机、网卡软硬件支持。


RoCE 带来更多软件客制化可能,白盒交换机有望进一步渗透。白盒交换机采用开放式网络交换架构,将商用硬件与开源软件操作系统相结合,以实现更灵活的网络配置和管理。RoCE 网络中的硬件升级以实现自适应路由、拥塞控制等功能,同时云厂商亦可根据自身硬件特性、需求和痛点自行开发相应功能的算法及软件,白盒交换机在软硬件上的发挥空间进一步扩展。
好文章,需要你的鼓励
英伟达宣布与诺基亚建立合作伙伴关系,将AI技术集成到诺基亚的移动网络基础设施中,为6G网络铺平道路。作为合作的一部分,英伟达将向诺基亚投资10亿美元。此次合作将通过AI-RAN产品提升频谱效率,并使AI推理在移动设备上更易获得。双方还将共同开发边缘AI推理工作负载基础设施。
Character AI联合耶鲁大学开发的OVI系统实现了音视频的统一生成,通过"孪生塔"架构让音频和视频从生成之初就完美同步。该系统在5秒高清内容生成上显著超越现有方法,为多模态AI和内容创作领域带来突破性进展。
美国能源部与英伟达、甲骨文合作建造7台新型AI超级计算机,用于加速科学研究和开发智能AI。其中位于阿贡国家实验室的两套系统将组成能源部最大的AI超算基础设施。Solstice系统配备10万颗Blackwell GPU,与Equinox系统互联后总计算性能达2200 exaFLOPs。此外还宣布了与Palantir的合作以及洛斯阿拉莫斯实验室的新系统计划。
这项由南洋理工大学研究团队开发的DragFlow技术,首次实现了在先进AI模型FLUX上的高质量区域级图像编辑。通过创新的区域监督、硬约束背景保护和适配器增强等技术,将传统点对点编辑升级为更自然的区域编辑模式,在多项基准测试中显著超越现有方法,为图像编辑技术带来革命性突破。