
传统云计算及相应算法产生的数据流基本为占用内存小、波动范围小的流量,因此虽然网络为非全局路由,按照既定策略为流量分配路径也不会过多出现拥塞;AI 计算产生的数据流中大象流(Elephant Flow)显著增加,对于少数被分配较多大象流的路径,其传输时间将显著高于大部分路径,这就会产生“长尾效应”,大部分路径传输完成后闲置等待少数路径完成传输,系统利用率因此打折扣。

不同计算进程间数据共接收端,容易出现“受害者流量”。AI 推理集群必然会出现多个负载处理多个用户需求或多条并发请求的情况,不同负载由不同端口输出数据,传输路径上有共用的叶、脊交换机,则共接收端的“多传一”(Many-To-One)现象容易出现网络背压、拥塞传播甚至丢包。
例如下图中,负载 A 由网卡 1、2、3 输出的路径与负载 B 由网卡 4 输出的路径共用交换机 a,且路径 3 与路径 4 共用交换机 b,在常规网络架构下,路径 1、2、3 均按最大带宽连接交换机 a,交换机 a 处出现拥塞,网路背压导致连接交换机 b 的路径也出现拥塞,路径 4 数据流的稳态带宽受到影响,成为“受害者流量”(Victim Flow)。

RDMA 网络如何解决潜在问题?“自适应路由”基于网卡及交换机,可解决“大象流”带来的长尾效应。
1)交换机根据各端口数据输出队列状态判断该端口的负荷情况,并将新数据路由至当前负荷最小的端口/路径,这样可有效实现各端口负载均衡;
2)重新路由后的数据一般会按照与原序列不同的顺序到达网卡,网卡利用 DDP 协议(数据报文中的 DDP 前缀包含识别数据原存储位置的信息)将接收到的数据按照原顺序存放。针对 AI 计算中显著增加的“大象流”,自适应路由通过动态监控各端口传输负荷并按此分配路径,均衡负载,解决长尾问题。


交换机拥塞控制算法+缓存池化实现性能隔离。1)各节点交换机实时监控传输速率及拥塞程度,由交换机芯片接收处理该节点及相邻节点的检测数据,并基于拥塞控制算法调节各相关交换机的传输速率;2)交换机将物理缓存池化,根据不同端口的接收、传输速率分配缓存。
芯片支持容量提升,增加 RoCE 配套功能。交换机芯片支持的容量迭代提升是必然趋势,博通 Tomahawk 5 总容量达 51.2T,支持 64 个端口单口带宽达 800G,相比上代翻倍,英伟达 Spectrum-X800 交换机总容量 51.2T、端口 64 个,分别是上一代的 4 倍和两倍;同时前一章中提到 RoCE 实现的自适应路由、拥塞控制及缓存池化分配等功能均需要交换机、网卡软硬件支持。


RoCE 带来更多软件客制化可能,白盒交换机有望进一步渗透。白盒交换机采用开放式网络交换架构,将商用硬件与开源软件操作系统相结合,以实现更灵活的网络配置和管理。RoCE 网络中的硬件升级以实现自适应路由、拥塞控制等功能,同时云厂商亦可根据自身硬件特性、需求和痛点自行开发相应功能的算法及软件,白盒交换机在软硬件上的发挥空间进一步扩展。
好文章,需要你的鼓励
太空物联网连接服务商Myriota宣布其HyperPulse连接平台正式商用,该平台结合公司5G非地面网络架构与从Viasat租赁的L波段容量。该平台采用波束跳跃技术,根据流量需求激活所需波束,优化电池供电物联网设备功耗。相比UltraLite服务,HyperPulse提供更低延迟和更高日数据传输量。服务将于12月15日在美国、墨西哥、巴西、澳大利亚和沙特正式上线。
DeepSeek-AI团队开发的DeepSeekMath-V2突破了传统数学AI只关注答案正确性的局限,首次实现了AI的"自我验证"能力。该系统在2025年IMO竞赛中达到金牌水平,在2024年普特南竞赛中得分118/120,远超人类最高分。这项技术通过训练AI像数学专家一样检查和改进自己的推理过程,为AI辅助数学研究和教育开启了新的可能。
AMD与HPE宣布扩大合作,共同开发下一代开放式可扩展人工智能基础设施。HPE将成为首批采用AMD Helios机架规模AI架构的系统供应商,该架构整合了AMD EPYC处理器、Instinct GPU、Pensando网络技术和ROCm开源软件栈。Helios平台每机架可提供2.9 exaFLOPS的FP4性能,采用开放机架宽设计标准,旨在简化大规模AI集群部署。HPE计划2026年全球推出该解决方案。
这项由伊利诺伊大学与谷歌联合开展的研究提出了"分离然后合并"(StM)的视频合成新方法,通过自动分解5万个视频片段创建了大规模训练数据集,解决了传统方法无法同时保持原始动作和实现环境适应的问题,让AI能像经验丰富的演员一样既保持特色又融入新场景。