生成式AI初创公司aiOla在官网开源了最新语音模型Whisper-Medusa,推理效率比OpenAI开源的Whisper快50%。
aiOla在Whisper的架构之上进行了修改采用了“多头注意力”机制的并行计算方法,允许模型在每个推理步骤中预测多个token,同时不会损失性能和识别准确率。
开源地址:https://github.com/aiola-lab/whisper-medusa
huggingface:https://huggingface.co/aiola/whisper-medusa-v1
传统的Transformer架构在生成序列时,是遵循逐个token的顺序预测过程。这意味着在生成新序列时,模型每次只能预测下一个token,然后将这个预测的token加入到序列中,再基于更新后的序列预测下一个token。
这虽然能够确保生成序列的连贯性和上下文相关性,但也有一个非常明显的缺陷——极大限制了模型的推理效率。
此外,由于每次只能处理一个 token ,模型难以捕捉到数据中的长程依赖关系,可能会忽略一些重要的全局信息,从而影响模型的整体性能和准确性。
而Whisper-Medusa使用了10头的多注意力机制, 能各自独立地计算注意力分布并行地处理输入,然后将各自的输出通过拼接的方式组合起来,形成一个多维度的向量。
随后向量被送入全连接层进行进一步的处理,以生成最终的token预测。这种并行的数据处理方式不仅加快了模型的推理效率,还增加了模型的表达能力,因为每个注意力头都可以专注于序列的不同子集,捕捉到更丰富的上下文信息。
为了使多头注意力机制在Whisper-Medusa模型中更高效地运行,aiOla采用了弱监督的方法,在训练过程中冻结了原Whisper模型的主要组件,使用该模型生成的音频转录作为伪标签来训练额外的token预测模块。
使得模型即便没有大量手动人工标注数据的情况下,依然能够学习到有效的语音识别模式。
此外在训练过程中,Whisper-Medusa的损失函数需要同时考虑预测的准确性和效率。一方面,模型需要确保预测的token序列与实际转录尽可能一致;
另一方面,通过多头注意力机制的并行预测,模型被鼓励在保证精度的前提下,尽可能地加快预测效率。
aiOla使用了学习率调度、梯度裁剪、正则化等多种方法,确保模型在训练过程中能够稳定收敛,同时避免过拟合性。
业务场景方面, Whisper-Medusa能理解100多种语言,用户可以开发音频转录、识别等多种应用,适用于翻译、金融、旅游、物流、仓储等行业。
aiOla表示,未来会将Whisper-Medusa的多注意力机制扩展至20个头,其推理效率将再次获得大幅度提升。
好文章,需要你的鼓励
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
北卡罗来纳大学研究团队通过深入分析手指触控过程中的动态特征,开发出新型触控识别算法,能够理解触控过程中的压力分布、接触面积变化等信息,比传统方法准确率提高15-28%。该技术采用分层处理架构解决计算效率问题,已在真实设备上验证效果,将为个性化交互、情感感知等未来应用奠定基础,有望显著改善用户的触控体验。
据报道,OpenAI正准备发布一款由即将推出的Sora 2视频模型驱动的独立社交应用。该应用与TikTok高度相似,采用垂直视频信息流和滑动滚动导航。不过,该应用仅支持AI生成的内容,用户无法从手机相册上传照片或视频。Sora 2在应用内生成的视频时长限制为10秒或更短。应用还包含身份验证工具,允许用户使用自己的肖像生成视频,其他用户可以标记并在重新混合视频时使用他们的肖像。
Perfios公司研究团队开发了创新的AI理财顾问训练框架,通过行为心理学驱动的数据生成方法,让8B参数的小模型在个人理财建议方面达到了与32B大模型相当的性能,同时运营成本降低80%。该方法首次将用户心理状态分析作为独立训练阶段,显著提升了AI建议的个性化程度和人性化表达,为普及化AI理财服务提供了技术路径。