随着ChatGPT、Copliot等生成式AI产品的快速迭代,对训练数据的需求呈指数级增长,同时也是提升大模型性能的关键环节之一。
为了解决训练数据短缺和质量差的难题,微软研究院发布了一个专门用于生成高质量合成数据的的AI Agent——Agent Instruct。
论文地址:https://arxiv.org/abs/2407.03502
为了突破传统合成数据的拟合性、多元化性差等,AgentInstruct使用了一种创新性方法“生成教学”(Generative Teaching),并通过多种智能体共同协作自动完成数据转换、清洗、优化从而合成高质量数据。
AgentInstruct会先收集各种原始数据种子,例如,教科书章节、网络文章、代码片段等。这些种子作为后续数据合成的基础,为模型提供了丰富的信息来源。
然后通过Content Transformation Agents智能体将原始的种子材料转换成一种中间形式,这种形式简化了后续步骤中针对具体目标创建指令的过程。
例如,一个简单的文本段落会被转换成一个论点段落、会议记录转录内容、API列表等。通过转换过程使得原本无结构的内容变得更加有条理,同时也保留了原始材料的多样性和丰富性。
在种子指令创建流程中,Instruction Creation Agents智能体会进一步处理这些经过初步转换的内容,创造出多样化的指令。
这些指令可以是要求模型执行某一特定任务的请求,例如,修改一段文字、编写一个故事、解释一个概念或是完成一个编码任务。
该阶段的目标是生成一系列具有挑战性且多样的任务,从而让模型在训练过程中接触到尽可能多的不同类型的任务。
为了进一步提指令的质量和复杂性,研究人员引入了指令细化流程,通过Refinement Agents智能体对指令进行深入的迭代优化,确保每一条指令都能够更加精准地达到预期的数据效果。
在细化的过程中,智能体首先提出各种可能的改进方案,旨在增加指令的复杂性、多样性和质量。例如,可能会提出修改指令中的某些部分,使得原本直接的问题变得更加间接,或者增加一些需要模型进行推理才能得出答案的元素。
然后再对改进后的方案进行一步优化,并且在语言表述上保持清晰和准确。智能体会仔细审核每一条建议的可行性和效果,然后以一种合理的方式整合到指令中。整个流程会反复进行迭代、优化,直到达到预期的合成数据规模和质量水平。
研究人员通过Agent Instruct自动生成了2500万个配对的高质量合成数据集,包含文本编辑、创意写作、编程、阅读理解等。然后再用生成的数据对Mistral-7b模型进行了训练、微调,开发了Orca-3模型。
在一系列基准测试中,Orca-3相比原来的Mistral-7b-Instruct的模型性能提升巨大。例如,在AGIEval上提升了40%,MMLU上提高了19%,GSM8K上进步了54%,BBH上提升了38%,AlpacaEval上提升了45%。同时,Orca-3在多项指标上也超越了LLAMA-8B-instruct和GPT-3.5-turbo等其他模型。
好文章,需要你的鼓励
新创公司Germ为Bluesky社交网络推出端到端加密消息服务,为用户提供比现有私信更安全的聊天选项。经过两年开发,该服务本周进入测试阶段,计划逐步扩大测试用户规模。Germ采用新兴技术如消息层安全协议和AT协议,无需手机号码即可实现安全通信。用户可通过"魔法链接"快速开始聊天,利用苹果App Clips技术无需下载完整应用。
这项研究由哈佛大学团队开发的创新框架,解决了多机构数据共享的核心难题。他们巧妙结合联邦学习、局部差分隐私和公平性约束,使不同机构能在保护数据隐私的同时协作开发更准确、更公平的决策模型。实验证明,该方法在多个真实数据集上既保障了隐私,又显著提升了模型公平性,为医疗、金融和政府等领域的数据协作提供了实用解决方案。
高通公司宣布正在与领先的超大规模云服务商进行深度合作谈判,开发专用于数据中心的CPU产品。CEO阿蒙表示,公司正在开发通用CPU和推理集群产品,预计2028财年开始产生收入。同时,高通面临三星在高端智能手机市场的竞争压力,三星计划在2026年推出采用2纳米工艺的新款Exynos处理器。高通Q3财报显示营收增长10%至103.5亿美元,净利润增长25%。
Meta AI研究团队开发的ALOHA系统是一种低成本开源的双臂机器人远程操作平台,旨在使机器人学习更加民主化和普及化。该系统结合了价格亲民的硬件设计和先进的行为克隆学习算法,使机器人能够从人类示范中学习复杂技能。研究表明,ALOHA系统展示了强大的泛化能力,能够在新环境中应用所学技能,如打开不同类型的瓶子。系统的开源性质鼓励全球研究者参与并推动机器人学习领域的发展,尽管仍面临成本和精确力控制等挑战。