01
简介
今天阿里云开源了Qwen2.5系列新一代大模型,这是继今年6月份Qwen2系列模型开源后的又一重磅更新,三个月一次大迭代,速度可谓非常之迅速。

本次开源的Qwen2.5语言模型主要包含7种尺寸,0.5B到72B全尺寸覆盖,弥补了Qwen2 14B/32B这两种业务黄金尺寸缺失的遗憾,并且开源了强劲的3B的端侧模型。本次开源,一个字:尺寸丰富,性能强劲。(此外还包括Math、Code和VL专项模型)

Qwen2.5语言模型的主要特点如下:
ModelScope:
https://modelscope.cn/organization/qwen?tab=model
HuggingFace:
https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e
02
模型性能
Qwen2.5-72B基础模型在各个任务上显著超过同类模型,以不到1/5的参数达到了与Llama-3-405B相当的表现。相比Qwen2-72B,Qwen2.5-72B几乎在所有基准评测上都有显著提升,尤其在通用任务、数学和代码竞赛中。

Qwen2.5-72B-Instruct模型展现出了极为优异的表现,甚至在多个核心任务上超越了Llama-3.1-405B,在数学、代码和对话任务任务中表现尤为突出。相较于Qwen2-72B-Instruct,Qwen2.5-72B-Instruct在各项任务上的表现都有显著提升。

Qwen2.5-14B在多项任务中表现出色,超越了许多规模更大的竞争对手。Qwen2.5-32B 表现尤为出色,甚至优于参数更大的同类模型。特别是在数学和代码等挑战性任务中,Qwen2.5-32B 大幅领先Qwen1.5-32B,在 MATH中获得 57.7分,在MBPP中获得84.5分。

除此之外,Qwen2.5-7B/3B/1.5B/0.5B等小参数规模的模型在同量级模型中也展现出了非常强大的性能。



Qwen2.5也是一个多语言模型,支持东南亚语、阿拉伯语、葡萄牙语、日语、韩语等。在多语言评测中,Qwen2.5-72B-Instruct的总体能力显著超越GPT4o-mini、Llama3.1-70B-Instruct、Mistral-Large-Instruct-2407等模型。

Qwen2.5-7B-Instruct的多语言能力也显著优于同量级模型。

03
推理 & 微调
Qwen2.5的模型结构与Qwen2、Qwen1.5对齐,所以可以直接沿用此前的推理脚本,脚本如下:
from transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "Qwen/Qwen2.5-7B-Instruct"device = "cuda" # the device to load the model ontomodel = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype="auto",device_map="auto")tokenizer = AutoTokenizer.from_pretrained(model_name)prompt = "Find the value of $x$ that satisfies the equation x+5 = 6x+7$."messages = [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt}]text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([text], return_tensors="pt").to(device)generated_ids = model.generate(**model_inputs,max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
此外,你也可以直接使用Firefly对Qwen2.5进行微调,与Qwen1.5和Qwen2的微调方式完全一样。
Firefly项目链接:https://github.com/yangjianxin1/Firefly
首先拉取项目代码库:
git clone https://github.com/yangjianxin1/Firefly.git
执行以下命令,即可使用QLoRA训练Qwen2.5-7B-Instruct模型:
cd Fireflypython train.py --train_args_file train_args/sft/qlora/qwen2.5-7b-sft-qlora.json
结合QLoRA,开启Unsloth训练Qwen2.5-7B,最少仅需8.43GB显存,开启Unsloth后,实测Qwen2.5-7B的训练速度可提升47.32%,训练时间可减少32.12%,显存占用可减少39.13%。可以拍拍手中的1080ti、4090显卡的灰尘,拿来训练Qwen2.5模型了。

04
模型体验
JSON格式遵循,利好开发。

输入:将"通义千问Qwen2.5 YYDS"进行倒序输出,首先输出你的思考过程,最后再输出结果

Qwen2.5理解了藏头诗的含义。


好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。