数据中心按照算力可以分为三类:云数据中心、智算中心和超算中心。云数据中心面向众多应用场景和应用层级扩张;智算中心 以AI专用芯片为计算算力底座,以促进AI产业化和智能化为目标,面向AI典型应用场景;超算中心主要支持科学计算和工程计算 ,主要由国家科技部布局建设。
国内数据中心建设较全球起步晚,目前处于云中心深化阶段,向智能算力中心转型,总体处于成长期。

根据Trendforce 测算, 2023 年全球 AI 服务器出货量逾120.8万台,同比增长超过37.7%。这家机构预测, 2024 年全球AI服务器整机出货量将达167.2万台,同比增长38.4%。台积电在Q1法说会上表示,AI需求的增长将以50%的 复合增长率持续至2028年,AI服务器需求增长也有望以较高速度持续至2028年。
2023年,中国人工智能服务器市场规模将达91亿美元, 同比 增长82.5%;智能算力规模预计达到414.1EFLOPS (每秒百亿亿次浮点运算),同比增长59.3%,2022年到2027年, 年复合增长率达到33.9%。
按照用途区分, AI服务器分为训练和推理两大类别。训练用服务器对存储空间、带宽和算力的要求较高, 主要采用8-GPU 设计;推理用服务器对算力、存储和带宽的要求相对较低,取决于业务场景, 可以采用 GPU、NPU、CPU 等不 同芯片承担推理任务,可以采用PCLe接口的AI加速器实现推理任务。
服务器随场景需求经历通用服务器-云服务器-边缘服务器-AI服务器四种模式,AI服务器采用GPU增强其并行计算能力。CPU+GPU是AI服务器的核心部件。机柜级解决方案有望成为未来 AI 服务器出货主流形式之一。
1、半导体行业系列专题:刻蚀—半导体制造核心设备,国产化典范
2、半导体行业系列专题:碳化硅—衬底产能持续扩充,加速国产化机会 3、半导体行业系列专题:直写光刻篇,行业技术升级加速应用渗透 4、半导体行业系列专题:先进封装—先进封装大有可为,上下游产业链受益





































好文章,需要你的鼓励
PDF协会在欧洲会议上宣布,将在PDF规范中添加对JPEG XL图像格式的支持。尽管Chromium团队此前将该格式标记为过时,但此次纳入可能为JXL带来主流应用机会。PDF协会CTO表示,选择JPEG XL作为支持HDR内容的首选解决方案。该格式具备广色域、超高分辨率和多通道支持等优势,但目前仍缺乏广泛的浏览器支持。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
Ironclad OS项目正在开发一个新的类Unix操作系统内核,面向小型嵌入式系统,计划支持实时功能。该项目的独特之处在于采用Ada编程语言及其可形式化验证的SPARK子集进行开发,而非常见的C、C++或Rust语言。项目还包含运行在Ironclad内核上的完整操作系统Gloire,使用GNU工具构建以提供传统Unix兼容性。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。