数据中心按照算力可以分为三类:云数据中心、智算中心和超算中心。云数据中心面向众多应用场景和应用层级扩张;智算中心 以AI专用芯片为计算算力底座,以促进AI产业化和智能化为目标,面向AI典型应用场景;超算中心主要支持科学计算和工程计算 ,主要由国家科技部布局建设。
国内数据中心建设较全球起步晚,目前处于云中心深化阶段,向智能算力中心转型,总体处于成长期。
根据Trendforce 测算, 2023 年全球 AI 服务器出货量逾120.8万台,同比增长超过37.7%。这家机构预测, 2024 年全球AI服务器整机出货量将达167.2万台,同比增长38.4%。台积电在Q1法说会上表示,AI需求的增长将以50%的 复合增长率持续至2028年,AI服务器需求增长也有望以较高速度持续至2028年。
2023年,中国人工智能服务器市场规模将达91亿美元, 同比 增长82.5%;智能算力规模预计达到414.1EFLOPS (每秒百亿亿次浮点运算),同比增长59.3%,2022年到2027年, 年复合增长率达到33.9%。
按照用途区分, AI服务器分为训练和推理两大类别。训练用服务器对存储空间、带宽和算力的要求较高, 主要采用8-GPU 设计;推理用服务器对算力、存储和带宽的要求相对较低,取决于业务场景, 可以采用 GPU、NPU、CPU 等不 同芯片承担推理任务,可以采用PCLe接口的AI加速器实现推理任务。
服务器随场景需求经历通用服务器-云服务器-边缘服务器-AI服务器四种模式,AI服务器采用GPU增强其并行计算能力。CPU+GPU是AI服务器的核心部件。机柜级解决方案有望成为未来 AI 服务器出货主流形式之一。
1、半导体行业系列专题:刻蚀—半导体制造核心设备,国产化典范
2、半导体行业系列专题:碳化硅—衬底产能持续扩充,加速国产化机会 3、半导体行业系列专题:直写光刻篇,行业技术升级加速应用渗透 4、半导体行业系列专题:先进封装—先进封装大有可为,上下游产业链受益
好文章,需要你的鼓励
香港中文大学与华为诺亚方舟实验室合作开发了PreMoe框架,解决了大型混合专家模型(MoE)在内存受限设备上的部署难题。研究团队发现MoE模型中的专家表现出明显的任务专业化特征,据此提出了概率专家精简(PEP)和任务自适应专家检索(TAER)两大核心技术。实验证明,DeepSeek-R1 671B模型在精简50%专家后仍保持97.2%的MATH500准确率,内存需求降至688GB;而更激进的精简方案(减少87.5%专家)也能保持72.0%的准确率。该方法适用于多种MoE架构,为强大AI系统的广泛部署铺平了道路。
SCIENCEBOARD是一项开创性研究,旨在评估多模态自主智能体在真实科学工作流中的表现。研究团队构建了一个包含169个高质量任务的基准测试,涵盖生物化学、天文学等六个科学领域,并开发了一个真实环境让智能体通过CLI或GUI接口与科学软件交互。实验评估表明,即使是最先进的模型在这些复杂科学任务上的成功率也仅为15%,远低于人类表现,揭示了当前技术的局限性并为未来科学智能体的发展提供了宝贵见解。
帝国理工学院的研究团队开发了AlphaMed,这是首个仅通过极简规则强化学习就能培养医疗推理能力的AI模型,无需依赖传统的思维链示范数据。通过分析数据信息丰富度和难度分布的影响,研究发现高信息量的医疗问答数据是推理能力的关键驱动因素。AlphaMed在六个医疗问答基准上取得了领先成绩,甚至超越了更大的封闭源模型,同时展现出自发的步骤推理能力,为医疗AI发展提供了更加开放、高效的新路径。
Alita是一种新型通用AI代理系统,采用极简设计理念,以"最小预定义,最大自我进化"为原则构建。由普林斯顿大学等多家机构研究团队开发的Alita,只配备一个核心能力和少量通用模块,能自主创建所需工具并重用为模型上下文协议(MCPs)。实验显示,Alita在GAIA基准测试上达到87.27%的通过率,超越包括OpenAI Deep Research在内的复杂系统,证明简约设计可带来卓越性能。