Blackwell GB200:英伟达GPU重塑AI服务器
GB200主板从HGX模式变为MGX,HGX是NVIDIA推出的高性能服务器,通常包含8个或4个GPU,MGX是一个开放模块化服务器设计规范和加速计算的设计,在Blackwell系列大范围使用。MGX模式下,GB200 Switch tray主要为工业富联生产,Compute Tray为纬创与工业富联共同生产,交付给英伟达。据Semianalysis,有望带来机柜集成、HBM、铜连接、液冷等四个市场价值量2-10倍提升。
一、Blackwell系列:GB200计算能力远超H100,CSP厂商资本开支提升
B200集成2080亿个晶体管,采用台积电N4P制程,为双芯片架构,192GB HBM3E,AI算力达20petaFLOPS(FP4),是Hopper的5倍。GB200机架提供4种不同主要外形尺寸,每种尺寸均可定制。与H100 相比,GB200 NVL72将训练速度(如 1.8 T 参数 GPT-MoE) 提高了 30 倍。
二、服务器细节拆分:主板从HGX到MGX,GB200 NVL72价值量提升
GB200主板从HGX模式变为MGX,HGX是NVIDIA推出的高性能服务器,通常包含8个或4个GPU,MGX是一个开放模块化服务器设计规范和加速计算的设计,在Blackwell系列大范围使用。MGX模式下,GB200 Switch tray主要为工业富联生产,Compute Tray为纬创与工业富联共同生产,交付给英伟达。据Semianalysis,有望带来机柜集成、HBM、铜连接、液冷等四个市场价值量2-10倍提升。
三、铜连接:DACs市场较快增长,GB200 NVL72需求较大
高速线缆中,有源光缆适合远距离传输,直连电缆高速低功耗。据LightCounting,高速线缆规模预期28年达28亿美元,DACs保持较快增长,Nvidia的策略是尽可能多地部署DACs。
四、HBM:HBM3E将于下半年出货,英伟达为主要买家
HBM 目前已经量产的共有HBM、HBM2、HBM2E、HBM3、HBM3E 五个子代标准。其中HBM3E将于下半年出货,HBM4或于2026年上市。
五、冷板式液冷较为成熟,GB200 NVL72采用液冷方案
AI大模型训推对芯片算力提出更高要求,提升单芯片功耗,英伟达B200功耗超1000W、接近风冷散热上限。液冷技术具备更高散热效率,包括冷板式与浸没式两类,其中冷板式为间接冷却,初始投资中等,运维成本较低,相对成熟,英伟达GB200 NVL72采用冷板式液冷解决方案。
1、AI算力“卖水人”系列(1):2024年互联网AI开支持续提升 2、AI算力“卖水人”系列(2):芯片散热从风冷到液冷,AI驱动产业革新
3、AI算力“卖水人”系列(3):NVIDIA GB200:重塑服务器、铜缆、液冷、HBM分析
1、中伦互联网数据中心全解读 2、中国第三方数据中心服务商分析报告 3、面向AI 智算数据中心网络架构与连接技术的发展路线展望 4、新一代智算数据中心基础设施技术白皮书 5、中国数据中心产业发展白皮书
1、大语言模型在计算机视觉领域的应用 2、大模型的异构计算和加速 3、大模型辅助需求代码开发 4、大模型在华为推荐场景中的探索和应用 5、大模型在推荐系统中的落地实践 6、大语言模型的幻觉检测 7、大语言模型在法律领域的应用探索






































0赞好文章,需要你的鼓励
推荐文章
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。