Blackwell GB200:英伟达GPU重塑AI服务器
GB200主板从HGX模式变为MGX,HGX是NVIDIA推出的高性能服务器,通常包含8个或4个GPU,MGX是一个开放模块化服务器设计规范和加速计算的设计,在Blackwell系列大范围使用。MGX模式下,GB200 Switch tray主要为工业富联生产,Compute Tray为纬创与工业富联共同生产,交付给英伟达。据Semianalysis,有望带来机柜集成、HBM、铜连接、液冷等四个市场价值量2-10倍提升。
一、Blackwell系列:GB200计算能力远超H100,CSP厂商资本开支提升
B200集成2080亿个晶体管,采用台积电N4P制程,为双芯片架构,192GB HBM3E,AI算力达20petaFLOPS(FP4),是Hopper的5倍。GB200机架提供4种不同主要外形尺寸,每种尺寸均可定制。与H100 相比,GB200 NVL72将训练速度(如 1.8 T 参数 GPT-MoE) 提高了 30 倍。
二、服务器细节拆分:主板从HGX到MGX,GB200 NVL72价值量提升
GB200主板从HGX模式变为MGX,HGX是NVIDIA推出的高性能服务器,通常包含8个或4个GPU,MGX是一个开放模块化服务器设计规范和加速计算的设计,在Blackwell系列大范围使用。MGX模式下,GB200 Switch tray主要为工业富联生产,Compute Tray为纬创与工业富联共同生产,交付给英伟达。据Semianalysis,有望带来机柜集成、HBM、铜连接、液冷等四个市场价值量2-10倍提升。
三、铜连接:DACs市场较快增长,GB200 NVL72需求较大
高速线缆中,有源光缆适合远距离传输,直连电缆高速低功耗。据LightCounting,高速线缆规模预期28年达28亿美元,DACs保持较快增长,Nvidia的策略是尽可能多地部署DACs。
四、HBM:HBM3E将于下半年出货,英伟达为主要买家
HBM 目前已经量产的共有HBM、HBM2、HBM2E、HBM3、HBM3E 五个子代标准。其中HBM3E将于下半年出货,HBM4或于2026年上市。
五、冷板式液冷较为成熟,GB200 NVL72采用液冷方案
AI大模型训推对芯片算力提出更高要求,提升单芯片功耗,英伟达B200功耗超1000W、接近风冷散热上限。液冷技术具备更高散热效率,包括冷板式与浸没式两类,其中冷板式为间接冷却,初始投资中等,运维成本较低,相对成熟,英伟达GB200 NVL72采用冷板式液冷解决方案。
1、AI算力“卖水人”系列(1):2024年互联网AI开支持续提升 2、AI算力“卖水人”系列(2):芯片散热从风冷到液冷,AI驱动产业革新
3、AI算力“卖水人”系列(3):NVIDIA GB200:重塑服务器、铜缆、液冷、HBM分析
1、中伦互联网数据中心全解读 2、中国第三方数据中心服务商分析报告 3、面向AI 智算数据中心网络架构与连接技术的发展路线展望 4、新一代智算数据中心基础设施技术白皮书 5、中国数据中心产业发展白皮书
1、大语言模型在计算机视觉领域的应用 2、大模型的异构计算和加速 3、大模型辅助需求代码开发 4、大模型在华为推荐场景中的探索和应用 5、大模型在推荐系统中的落地实践 6、大语言模型的幻觉检测 7、大语言模型在法律领域的应用探索






































0赞好文章,需要你的鼓励
推荐文章
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。