Blackwell GB200:英伟达GPU重塑AI服务器
GB200主板从HGX模式变为MGX,HGX是NVIDIA推出的高性能服务器,通常包含8个或4个GPU,MGX是一个开放模块化服务器设计规范和加速计算的设计,在Blackwell系列大范围使用。MGX模式下,GB200 Switch tray主要为工业富联生产,Compute Tray为纬创与工业富联共同生产,交付给英伟达。据Semianalysis,有望带来机柜集成、HBM、铜连接、液冷等四个市场价值量2-10倍提升。
一、Blackwell系列:GB200计算能力远超H100,CSP厂商资本开支提升
B200集成2080亿个晶体管,采用台积电N4P制程,为双芯片架构,192GB HBM3E,AI算力达20petaFLOPS(FP4),是Hopper的5倍。GB200机架提供4种不同主要外形尺寸,每种尺寸均可定制。与H100 相比,GB200 NVL72将训练速度(如 1.8 T 参数 GPT-MoE) 提高了 30 倍。
二、服务器细节拆分:主板从HGX到MGX,GB200 NVL72价值量提升
GB200主板从HGX模式变为MGX,HGX是NVIDIA推出的高性能服务器,通常包含8个或4个GPU,MGX是一个开放模块化服务器设计规范和加速计算的设计,在Blackwell系列大范围使用。MGX模式下,GB200 Switch tray主要为工业富联生产,Compute Tray为纬创与工业富联共同生产,交付给英伟达。据Semianalysis,有望带来机柜集成、HBM、铜连接、液冷等四个市场价值量2-10倍提升。
三、铜连接:DACs市场较快增长,GB200 NVL72需求较大
高速线缆中,有源光缆适合远距离传输,直连电缆高速低功耗。据LightCounting,高速线缆规模预期28年达28亿美元,DACs保持较快增长,Nvidia的策略是尽可能多地部署DACs。
四、HBM:HBM3E将于下半年出货,英伟达为主要买家
HBM 目前已经量产的共有HBM、HBM2、HBM2E、HBM3、HBM3E 五个子代标准。其中HBM3E将于下半年出货,HBM4或于2026年上市。
五、冷板式液冷较为成熟,GB200 NVL72采用液冷方案
AI大模型训推对芯片算力提出更高要求,提升单芯片功耗,英伟达B200功耗超1000W、接近风冷散热上限。液冷技术具备更高散热效率,包括冷板式与浸没式两类,其中冷板式为间接冷却,初始投资中等,运维成本较低,相对成熟,英伟达GB200 NVL72采用冷板式液冷解决方案。
1、AI算力“卖水人”系列(1):2024年互联网AI开支持续提升 2、AI算力“卖水人”系列(2):芯片散热从风冷到液冷,AI驱动产业革新
3、AI算力“卖水人”系列(3):NVIDIA GB200:重塑服务器、铜缆、液冷、HBM分析
1、中伦互联网数据中心全解读 2、中国第三方数据中心服务商分析报告 3、面向AI 智算数据中心网络架构与连接技术的发展路线展望 4、新一代智算数据中心基础设施技术白皮书 5、中国数据中心产业发展白皮书
1、大语言模型在计算机视觉领域的应用 2、大模型的异构计算和加速 3、大模型辅助需求代码开发 4、大模型在华为推荐场景中的探索和应用 5、大模型在推荐系统中的落地实践 6、大语言模型的幻觉检测 7、大语言模型在法律领域的应用探索






































0赞好文章,需要你的鼓励
推荐文章
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。