全球社交巨头Meta开源了首个轻量级量化版模型Llama 3.2,一共有10亿和30亿两种参数。
为了使该模型能在手机、平板、笔记本等移动设备上部署使用,Meta使用了带有LoRA适配器的量化感知训练和SpinQuant进行了大幅度性能优化,平均减少了41%的内存使用、减少56%的模型规模,但推理效率却提升了2—4倍。
例如,在一加12手机上,Llama 3.2的解码延迟平均提高了2.5倍,预填充延迟平均提高了4.2倍,而在三星的S24+、S22两款手机同样获得了类似的数据。

开源地址:https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf
在架构方面,Llama 3.2 1B和3B采用了标准的Transformer结构。但对所有变压器块中的线性层进行了特定的量化处理,采用4位组方式量化权重,并对激活进行8位每标记动态量化。
分类层则量化为8位每通道的权重和8位每标记的动态激活量化,同时使用了8位每通道量化用于嵌入。

模型优化方面,使用了LoRA适配器量化感知训练和SpinQuant两种重要技术。LoRA适配器量化在初始化 QAT 时,会使用经过有监督微调后获得的BF16 Llama 3.2模型检查点,进行额外一轮带有 QAT 的有监督微调训练。
然后冻结 QAT 模型的主干,再使用低秩自适应的 LoRA 适配器对变压器块内所有层进行另一轮有监督微调,并且LoRA 适配器的权重和激活保持在 BF16,最后通过直接偏好优化进行微调得到高能效模型。

而SpinQuant是目前最先进的后训练量化技术之一,通过使用WikiText数据集来学习旋转矩阵,这些矩阵有助于平滑数据中的异常值,促进更有效的量化。在确定了旋转矩阵之后,应用了包括范围设置和生成性后训练量化在内的最佳量化效果。
该方法虽不如 QAT + LoRA 准确,但具有很灵活的可移植性,且无需访问通常是私有的训练数据集。这对于数据可用性或计算资源有限的应用来说,是一个非常好的解决方法。
开发者还可以使用此方法对自己微调后的 Llama 模型进行量化,以适应不同的硬件目标和用例,其开源库与 ExecuTorch和 Llama Stack 完美兼容扩展性很强。
虽然Llama 3.2 1B和3B的参数很小,但都支持128k tokens 的上下文长度,这对于移动端来说非常重要,可轻松处理长文本的总结、复杂指令的理解等场,例如,在处理长篇小说的内容总结、学术论文的要点提取等任务时,可以更好地理解文本的整体逻辑和语义,从而提供更准确的结果。

根据Meta公布的测试数据显示,在MMLU、GSM8K、MATH、MGSM等主流基准测试中,量化后的Llama 3.2不仅性能没有减少,还能与Llama 3 8B的性能媲美,充分证明了其高性能低消耗的特点。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。