开源大模型领域迎又来一位重磅玩家——腾讯。
腾讯一出手就是个超大模型,开源的Hunyuan-Large是目前市面上最大基于 Transformer架构的专家混合(MoE)模型。一共有3890 亿参数,其中激活参数为 520 亿,具备处理长达256K上下文能力。
根据腾讯公开测试数据显示,Hunyuan-Large不仅超过了社交巨头Meta开源的最新、最大模型LLama3.1 - 405B,并且在激活参数数量显著减少的情况下,实现了高达3.2%的性能提升。在数学、日常推理、文本生成等方面非常优秀。
开源地址:https://github.com/Tencent/Tencent-Hunyuan-Large
huggingface:https://huggingface.co/tencent/Tencent-Hunyuan-Large
云开发平台:https://cloud.tencent.com/document/product/851/112032
Hunyuan-Large采用了高效的MoE结构,使用多个专家替换了Transformer中的原始前馈网络。在训练过程中,只有一小部分专家会被激活,这样的设计使得模型能够更加高效地进行训练和推理。
一共包含共享专家和专用专家两种模式,不仅能够捕捉所有token所需的共同知识,还能够动态学习特定领域的知识。同时Hunyuan-Large还开发了一种新的回收路由策略,用于处理在原始top-k路由过程中被丢弃的token。这种策略通过将这些token重新分配给未超过容量的其他专家,以优化训练效率和稳定性。
Hunyuan-Large还对KV缓存进行了创新,使用了压缩技术。在传统的Transformer架构中,每层都会维护一个用于存储先前计算出的键值对的缓存,这对于支持长序列输入非常必要。但随着序列长度的增长,这种缓存机制会导致巨大的内存开销。
而KV缓存压缩技术通过减少KV缓存的存储需求来降低内存占用,同时保持了模型对于长序列处理的能力,可以有效地减少键值对的存储空间,而不牺牲准确性或速度。即使面对非常长的文本输入,模型也能高效运行,不会因为内存限制而受到阻碍。
在专家特定的学习率缩放方面,Hunyuan-Large采用了AdamW作为优化器,并根据批量大小调整学习率。根据最新的研究,对于Adam风格的优化器,最佳学习率与批量大小之间的关系有了新的理解。Hunyuan-Large根据每个专家在单次迭代中处理的token数量不同,为不同专家分配了不同的学习率,以优化训练效率。
训练数据方面,Hunyuan-Large一共使用了7万亿token数据进行了预训练,其中包括近1.5万亿的高质量和多样化的合成数据。这些合成数据的生成过程涉及四个关键步骤:指令生成、指令演化、响应生成和响应过滤。
在指令生成阶段,利用高质量的数据源,如网页、问答数据、代码库、书籍等,配合多样化的指令生成提示,生成覆盖多个领域的多样化指令。在指令演化阶段,通过增强指令的清晰度和信息量、扩展低资源领域指令以及增加指令难度等手段,进一步提升指令的质量。
响应生成阶段则利用多个专业化模型为这些演化后的指令生成信息丰富、准确的答案。最后,在响应过滤阶段,通过批评模型和自一致性检查,确保合成的指令-响应对的质量,有效去除低质量或不一致的数据。
在Hunyuan-Large的训练过程中,学习率调度扮演了至关重要的作用,一共分为三个阶段:初始的预热阶段、随后的逐渐衰减阶段,以及最后的退火阶段。这种设计使得模型能够在初始阶段有效地探索解空间,避免过早收敛到次优的局部最小值。随着训练的进行,学习率的逐渐降低确保了模型能够向更优解收敛。
在预训练的最后5%阶段,Hunyuan-Large引入了退火阶段,将学习率降低到峰值的十分之一。这有助于模型细致地调整参数,实现更高的泛化能力,从而提升整体性能。在这个阶段,模型优先使用最高质量的数据集,这对于增强模型在退火阶段的性能至关重要。
在退火阶段之后,Hunyuan-Large还进行了长文本预训练,以增强其处理长文本的能力,逐渐增加token长度从32K增长至256K。Hunyuan-Large采用了RoPE来构建位置嵌入,并在256K预训练阶段将RoPE的基础频率扩展到10亿。
长文本预训练的数据主要来自书籍和代码等自然长文本数据,这些数据与正常长度的预训练数据混合,形成了长文本预训练语料库。
腾讯将Hunyuan-Large与LLama3.1-405B、LLama3.1-70B、Mixtral-8x22B和DeepSeek-V2市面上超大开源模型进行了综合评测。
结果显示,Hunyuan-Large皆取得了超强的性能表现,例如,在CommonsenseQA测试中,Hunyuan-Large 的准确率达到 92.9%,而 LLama3.1 - 70B 为 84.1%,LLama3.1 - 405B 为 85.8%。
在PIQA 测试中,Hunyuan-Large 的准确率为 88.3%,优于LLama3.1 - 405B的83.7%。在WinoGrande 测试中,Hunyuan-Large的准确率达到 88.7%,超过了LLama3.1 - 70B 的 85.3%和LLama3.1 - 405B的86.7%。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。