AI服务器产业链包括芯片CPU、GPU,内存DRAM和内存接口及HBM,本地存储SSD,NIC、PCle插槽、散热和等。服务器CPU架构包括X86、ARM、MIPS和RISC-V等。
Al芯片是AI服务器算力的核心,专门用于处理人工智能应用中的大量计算任务,Al芯片按架构可分为GPU、FPGA、ASIC和NPU等。HBM作为内存产品的一种,已经成为高端GPU标配,可以理解为与CPU或SoC对应的内存层级,将原本在PCB板上的DDR和GPU芯片同时集成到SiP封装中,使内存更加靠近GPU,使用HBM可以将DRAM和处理器(CPU,GPU以及其他ASIC)之间的通信带宽大大提升,从而缓解这些处理器的内存墙问题。
服务器本地存储的选择方案则包括HDD和SSD,SSD的主要硬件组件包括NAND Flash、主控芯片和DRAM,核心软件为企业级SSD的固件,数据中心级SSD已不再是一个硬盘,而是一个具备处理、缓存、计算、安全保护的小型系统,SSD渗透率有望逐渐提升。
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。