AI服务器产业链包括芯片CPU、GPU,内存DRAM和内存接口及HBM,本地存储SSD,NIC、PCle插槽、散热和等。服务器CPU架构包括X86、ARM、MIPS和RISC-V等。
Al芯片是AI服务器算力的核心,专门用于处理人工智能应用中的大量计算任务,Al芯片按架构可分为GPU、FPGA、ASIC和NPU等。HBM作为内存产品的一种,已经成为高端GPU标配,可以理解为与CPU或SoC对应的内存层级,将原本在PCB板上的DDR和GPU芯片同时集成到SiP封装中,使内存更加靠近GPU,使用HBM可以将DRAM和处理器(CPU,GPU以及其他ASIC)之间的通信带宽大大提升,从而缓解这些处理器的内存墙问题。
服务器本地存储的选择方案则包括HDD和SSD,SSD的主要硬件组件包括NAND Flash、主控芯片和DRAM,核心软件为企业级SSD的固件,数据中心级SSD已不再是一个硬盘,而是一个具备处理、缓存、计算、安全保护的小型系统,SSD渗透率有望逐渐提升。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。